Math, asked by biswajitrout21, 11 months ago

hi can you solve this

Attachments:

Answers

Answered by sivaprasath
1

Answer:

Step-by-step explanation:

Given :

x=\frac{\sqrt{a^2+b^2}+\sqrt{a^2-b^2}}{\sqrt{a^2+b^2}-\sqrt{a^2-b^2}}

To prove :

a^2b^2-2a^2x+b=0

Proof :

x=\frac{\sqrt{a^2+b^2}+\sqrt{a^2-b^2}}{\sqrt{a^2+b^2}-\sqrt{a^2-b^2}}

By taking conjugate,

i.e. multiplying and dividing by \sqrt{a^2+b^2}+\sqrt{a^2-b^2

We get,

x=\frac{\sqrt{a^2+b^2}+\sqrt{a^2-b^2}}{\sqrt{a^2+b^2}-\sqrt{a^2-b^2}} \times \frac{\sqrt{a^2+b^2}+\sqrt{a^2-b^2}}{\sqrt{a^2+b^2}+\sqrt{a^2-b^2}}

x=\frac{(\sqrt{a^2+b^2}+\sqrt{a^2-b^2})^2}{(\sqrt{a^2+b^2}-\sqrt{a^2-b^2})(\sqrt{a^2+b^2}+\sqrt{a^2-b^2})}

x=\frac{(\sqrt{a^2+b^2})^2+(\sqrt{a^2-b^2})^2 + 2(\sqrt{a^2+b^2})(\sqrt{a^2-b^2})}{(a^2+b^2)-(a^2-b^2)}

x=\frac{(a^2+b^2)+(a^2-b^2)+ 2(\sqrt{a^4-b^4})}{2b^2}

x = \frac{2a^2+2\sqrt{a^4-b^4}}{2b^2}

x = \frac{a^2+\sqrt{a^4-b^4}}{b^2} ...(1)

___

a^2b^2-2a^2x+b=0

-2a^2x=-b-a^2b^2 (or) 2a^2x = a^2b^2+b

x = \frac{a^2b^2+b}{2a^2} or x = \frac{b^2}{2}+\frac{b}{2a^2}  ....(2)

since LHS of (1) is equal to LHS of (2)  (LHS = Left Hand Side of equation)

but, RHS of (1) is equal to RHS of (2)  (RHS = Right Hand Side of equation).

It is incorrect,.

Similar questions