Math, asked by amanshaks, 1 year ago

HI EVERYONE

PLZ HELP

IT'S URGENT ​

Attachments:

Answers

Answered by Rythm14
5

To.Prove:\frac{cot\theta+cosec\theta-1}{cot\theta-cosec\theta+1} =\frac{1+cos\theta}{sin\theta}

----------------

LHS=\frac{cot\theta+cosec\theta-1}{cot\theta-cosec\theta+1}

=\frac{cot\theta+cosec\theta-(cosec^2\theta-cot^2\theta)}{cot\theta-cosec\theta+1}

=\frac{cot\theta+cosec\theta-(cosec\theta-cot\theta)(cosec\theta-cot\theta)}{cot\theta-cosec\theta+1}

=\frac{cot\theta+cosec\theta(1-(cosec\theta-cot\theta)}{cot\theta-cosec\theta+1}

=\frac{cot\theta+cosec\theta({1+cosec-cot\theta)}}{cot\theta-cosec\theta+1}

=cot\theta+cosec\theta

=\frac{cos\theta}{sin\theta} +\frac{1}{sin\theta}

=\frac{cos\theta+1}{sin\theta}

=\frac{1+cos\theta}{sin\theta}

=RHS

-----------------

LHS = RHS

Answered by Anonymous
0

Answer:

→ 2(x − 1) + 5(x − 2) = 5x

→ 2x - 2 + 5x - 10 = 5x

→ 7x - 12 = 5x

→ 7x - 5x = 12

→ 2x = 12

→ x = 12/2

→ x = 6

Similar questions