Math, asked by honey567890, 3 months ago

Hi find the equation of locus of point equidistant from the points (1,3) (5,7)​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Points are (1,3) and (5,7)}

\textbf{To find:}

\textsf{The locus of a point which is equidistant from the}

\textsf{given two points}

\textbf{Solution:}

\textsf{Let the given points be A(1,3) and B(5,7)}

\textsf{Let P(h,k) be the moving point}

\textsf{As per given data,}

\mathsf{PA=PB}

\mathsf{\sqrt{(h-1)^2+(k-3)^2}=\sqrt{(h-5)^2+(k-7)^2}}

\textsf{Squaring on bothsides, we get}

\mathsf{(h-1)^2+(k-3)^2=(h-5)^2+(k-7)^2}

\mathsf{h^2+1-2h+k^2+9-6k=h^2+25-10h+k^2+49-14k}

\mathsf{10-2h-6k=74-10h-14k}

\mathsf{8h+8k-64=0}

\mathsf{h+k-8=0}

\therefore\mathsf{The\;locus\;of\;P\;is}

\boxed{\mathsf{x+y-8=0}}

\textbf{Find more:}

Find the locus of point P if PA=PB. Coordinates of. A(4,0)

and B(-4,0)

https://brainly.in/question/18378699

The locus of the point which is equidistant from the points (-2,2) and (3,0) is

https://brainly.in/question/34702598

Similar questions