Math, asked by shbsbsbh, 1 year ago

hi friends

good afternoon

don't spam

The roots of the equation
\sf\:a(b-c) x^{2} + b(c-a)x + c(a-b) = 0 are ,

Answers

Answered by Anonymous
0
hey mate,

your answer is in the attachment...
Attachments:
Answered by UltimateMasTerMind
3
_________Heyy Buddy ❤_________

_______Here's your Answer _________

 \sqrt{2}  {x}^{2}  - 3x +  \sqrt{2}  = 0 \\  \\ here \: a =  \sqrt{2}  \:  \:  \: b =  - 3 \:  \: and \: c =  \sqrt{2.}  \\  \\  =  > x =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  =  > x =  \frac{3 +  \sqrt{9 - 4 \times 2} }{2 \sqrt{2} }  \\  \\  =  > x = \frac{3 +  \sqrt{1} }{2 \sqrt{2} }  \\  \\  =  > x =  \frac{3 + 1}{2 \sqrt{2} }  \\  \\  =  > x =  \frac{4}{2 \sqrt{2} }  \\  \\  =  > x =  \frac{2}{ \sqrt{2} }  \\  \\  =  > x =  \frac{2}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  \\  =  > x =  \frac{2 \sqrt{2} }{2}  \\  \\  =  > x =  \sqrt{2}

✔✔✔✔
Similar questions