Math, asked by queensp73, 10 months ago

Hi Friends !!
if alpha and beta are the zeroes of the polynomial p(x)=x²-5x+6,find the value of alpha⁴beta²+alpha²beta⁴​ .

#follow me :)

Answers

Answered by EliteSoul
95

Given:-

→ Polynomial : P(x) = x² - 5x + 6

To find:-

  • αβ² + α²β

Solution:-

We will find zeros of given polynomial by factorization method:-

→ x² - 5x + 6 = 0

→ x² - 3x - 2x + 6 = 0

→ x(x - 3) - 2(x - 3) = 0

→ (x - 3)(x - 2) = 0

→ x = 3 & x = 2

Therefore,

Zeros of polynomial are 3 & 2 .

Hence,

  • α = 3
  • β = 2

Now, α⁴β² + α²β⁴

→ (3)⁴ × (2)² + (3)² × (2)⁴

→ (81 × 4) + (9 × 16)

→ 324 + 144

→ 468

Therefore,

Required value = 468 .

Answered by Anonymous
13

Aɴꜱᴡᴇʀ

  \huge\sf{468}

_________________

Gɪᴠᴇɴ

 \sf{p(x) =  {x}^{2}  - 5x + 6}

_________________

ᴛᴏ ꜰɪɴᴅ

 { \alpha }^{4}  { \beta }^{2}  +   { \alpha }^{2}  { \beta }^{4}

_________________

Sᴛᴇᴘꜱ

 \sf{}p(x) =  {x}^{2}  - 5x + 6 \\  \sf{} =  {x }^{2} - 2x - 3x  + 6  \\  \sf{}x(x - 2) - 3(x - 2) \\  \sf{}(x - 3)(x - 2) \\  \sf{}x = 3 \: and \: x =  2

So the zeros of the polynomial are 3 and 2

 \sf{}so \:  \alpha  = 3 \\  \sf{} \beta  = 2 \\  \sf{}so \: sub \: this \: in \:  { \alpha }^{4}  { \beta }^{2}  +  { \alpha }^{2}  { \beta }^{4}

 \sf{}we \: get \: ( {3)}^{4} ( {2)}^{2}  + {(3)}^{2}  {(2)}^{4}  \\  \sf{} = (81 \times 4) +( 9  \times  16) \\  \sf{} = 468

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Similar questions