Math, asked by devansh1234555, 10 months ago

Hi friends !!<br />
if alpha and beta are the zeroes of the polynomial p(x)=x²-5x+6,find the value of alpha⁴beta²+alpha²beta⁴​ <br /><br />
#Keep smiling :)​

Answers

Answered by samaptimajumdar76
0

Step-by-step explanation:

bwbysnswq wuaiaufind the difference between the face value and place value of 5 in 195267w

Answered by Anonymous
1

ANSWER:

The value of above expression = 468.

GIVEN:

P(x) = x²-5x+6

TO FIND:

value of alpha⁴beta²+alpha²beta⁴

Solution:-

P(x) = x²-5x+6

Here;

 =  &gt;  \alpha  +  \beta  =  \frac{ - ( - 5)}{1}

 =  &gt;  \alpha  \times  \beta  =  \frac{6}{1}

Now Simplify the above expression,

 =  { \alpha }^{4}  { \beta }^{2}  +  { \alpha }^{2}  { \beta }^{4}  \\  =  { \alpha }^{2}  { \beta }^{2} ( { \alpha }^{2}  +  { \beta }^{2} )

Now finding the value of (α² + β²),

 =  { \alpha }^{2}  +  { \beta }^{2}  \\  = ( { \alpha } +  \beta )^{2}  - 2 \alpha  \beta  \\ putting \: the \: value \: we \: get \:  \\  =  {5}^{2}  - 2 \times 6 \\  = 13

Now;

putting (α² + β²)= 13 in eq(i) we get:

 = ( { \alpha  \beta })^{2}  \times 13 \\  =  {6}^{2}  \times 13 \\  = 468

The value of above expression = 468.

Similar questions