Math, asked by Sauron, 1 year ago

Hi ✌️ Friends...

Math question

⬇️⬇️⬇️⬇️

A bicycle was sold at the profit of 12% Had it been sold for Rs.16 more the profit would have been 20% . Find the selling price of the bicycle.

⬆️⬆️⬆️⬆️

⚡Step by step Explaination ⚡


❌No spam ❌

Topic : Profit and Loss


Answers

Answered by Grimmjow
40

\textsf{Let the Selling Price of the Bicycle be : SP}


\textsf{Let the Cost Price of the Bicycle be : CP}


\sf{Given : If\;the\;Bicycle\;is\;sold\;at\;the\;Selling\;Price\;(SP),\;Profit\;Percentage\;is\;12\%}


\sf{\bigstar\;\;We\;know\;that : \sf{Profit\;Percentage = {\bigg(\dfrac{SP - CP}{CP}\bigg)\times 100}}


\sf{\implies {\bigg(\dfrac{SP - CP}{CP}\bigg)\times 100} = 12}


\sf{\implies {\bigg(\dfrac{SP}{CP} - 1\bigg) \times 100} = 12\;------\;[1]}


\textsf{Given : If Bicycle is sold for Rs.16 more the Profit would be 20\%}


\implies \textsf{New Selling Price which made 20\% will be : (SP + 16)}


\sf{\implies \bigg(\dfrac{SP + 16 - CP}{CP}\bigg)\times 100 = 20}


\sf{\implies {\bigg(\dfrac{SP}{CP} + \dfrac{16}{CP} - 1 \bigg)\times 100} = 20}


\sf{\implies {\bigg(\dfrac{SP}{CP} - 1 \bigg)\times 100} + \bigg(\dfrac{16}{CP}\bigg) \times 100 = 20}


\textsf{Substituting the Value of Equation [1] in the above Equation, We get :}


\sf{\implies 12 + \bigg(\dfrac{16}{CP}\bigg) \times 100 = 20}


\sf{\implies \bigg(\dfrac{16}{CP}\bigg) \times 100 = 20 - 12}


\sf{\implies \bigg(\dfrac{16}{CP}\bigg) \times 100 = 8}


\sf{\implies 1600 = 8CP}


\sf{\implies CP = \dfrac{1600}{8}}


\sf{\implies CP = 200}


\textsf{Substituting the Value of CP in Equation [1], We get :}


\sf{\implies \bigg(\dfrac{SP}{200} - 1\bigg)\times 100 = 12}


\sf{\implies \dfrac{100(SP)}{200} - 100 = 12}


\sf{\implies \dfrac{(SP)}{2} = 100 + 12}


\sf{\implies \dfrac{(SP)}{2} = 112}


\sf{\implies SP = 112 \times 2}


\implies \sf{SP = 224}


\bf{Answer : }\;\;\textsf{The Selling Price of the Bicycle is Rs.224}

--------------------------------------------------------------------------------------------------------

\sf{\underline{Method - 2}}


\textsf{Let the Selling Price of the Bicycle be : SP}


\textsf{Let the Cost Price of the Bicycle be : CP}


\sf{Given : If\;the\;Bicycle\;is\;sold\;at\;the\;Selling\;Price\;(SP),\;Profit\;Percentage\;is\;12\%}


\sf{\implies {\bigg(\dfrac{SP - CP}{CP}\bigg)\times 100} = 12}


\sf{\implies {\bigg(\dfrac{SP - CP}{CP}\bigg)} = \dfrac{12}{100}}


\sf{\implies {\bigg(\dfrac{SP}{CP} - 1\bigg)} = 0.12}


\sf{\implies {\dfrac{SP}{CP}} = 1 + 0.12}


\sf{\implies {\dfrac{SP}{CP}} = 1.12}


\implies \sf{SP = 1.12CP\;------\;[1]}


\textsf{Given : If Bicycle is sold for Rs.16 more the Profit would be 20\%}


\implies \textsf{New Selling Price which made 20\% will be : (SP + 16)}


\sf{\implies \bigg(\dfrac{SP + 16 - CP}{CP}\bigg)\times 100 = 20}


\sf{\implies \bigg(\dfrac{1.12CP + 16 - CP}{CP}\bigg) = \dfrac{20}{100}}


\sf{\implies \bigg(\dfrac{0.12CP + 16}{CP}\bigg) = 0.2}


\sf{\implies 0.12 + \dfrac{16}{CP} = 0.2}


\sf{\implies \dfrac{16}{CP} = 0.08}


\sf{\implies CP = \dfrac{16}{0.08}}


\sf{\implies CP = 200}


\textsf{Substituting the Value of CP in Equation [1], We get :}


\sf{\implies SP = 1.12 \times 200}


\sf{\implies SP = 224}


\textsf{The Selling Price of the Bicycle is Rs.224}


Avengers00: well explained (:
Grimmjow: Thank you! ^_^
Answered by pratyush4211
27
Let CP of Bicycle be=₹x
SP=12% Profit
sp = x + (x \times 12\%) \\  = x + (x \times  \frac{12}{100} ) \\  = x +  \frac{3x}{25}  \\  =  \frac{25x + 3x}{25}  \\  =  \frac{28x}{25}

SP=₹28x/25
CP=₹x
If ₹16 more on CP Profit=20%
A/Q
x + (x \times 20\%) =  \frac{28x}{25}  + 16 \\  = x + (x \times  \frac{20}{100} ) =  \frac{28x + 16 \times 25}{25}  \\  = x +  \frac{x}{5}  =  \frac{28x}{25}  +  \frac{400}{25}  \\  =  \frac{5x + x}{5}  -  \frac{28x}{25}  =  \frac{400}{25}  \\  =  \frac{6x}{5}  -  \frac{28x}{25}  = 16 \\  =  \frac{30x - 28x}{25}  = 16 \\  =  \frac{2x}{25}  = 16 \\  = x = 16 \times  \frac{25}{2}  \\ x = 200
CP=₹200
SP=28×200/25
=₹224
SP when 12% profit=₹224
SP when 20% profit=₹240

Similar questions