Math, asked by lamichhanemikesh, 8 days ago

Hi friends please help me eolve this problem. :- If a + 1/a = 9 then, calculate a^6 + 1 / a^3.
Please solve this problem A.S.A.P ( As Soon As Possible ).
*Thank You*​

Answers

Answered by user0888
66

\large{\text{\underline{Let's begin:-}}

The point of the question is that we can thrice the exponent, by cubing both sides.

\hookrightarrow\boxed{(a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}}

\large{\text{\underline{To find:-}}

The value of \dfrac{a^{6}+1}{a^{3}}, if a+\dfrac{1}{a}=9.

\large{\text{\underline{Solution:-}}

First, let's simplify the value we need to find.

\dfrac{a^{6}+1}{a^{3}}=a^{3}+\dfrac{1}{a^{3}}

Now we know what we need to find.

By polynomial identity of cubes, on the given equation, we get,

\hookrightarrow (a+\dfrac{1}{a})^{3}=9^{3}

\hookrightarrow a^{3}+3a+\dfrac{3}{a}+\dfrac{1}{a^{3}}=729

We can simplify further by using the given equation,

\hookrightarrow a^{3}+3(a+\dfrac{1}{a})+\dfrac{1}{a^{3}}=729

\hookrightarrow a^{3}+3\times9+\dfrac{1}{a^{3}}=729

\hookrightarrow a^{3}+27+\dfrac{1}{a^{3}}=729

\hookrightarrow a^{3}+\dfrac{1}{a^{3}}=702

\large{\text{\underline{Conclusion:-}}

The required value is 702.

\large{\text{\underline{Exercise for readers:-}}

Find the value of a^{5}+\dfrac{1}{a^{5}}, if a+\dfrac{1}{a}=1.

If you have enough time try this question also.

\large{\text{\underline{Solution of exercise:-}}

Squaring both sides,

\hookrightarrow (a+\dfrac{1}{a})^{2}=1

\hookrightarrow a^{2}+2+\dfrac{1}{a^{2}}=1\implies\therefore a^{2}+\dfrac{1}{a^{2}}=-1

Cubing both sides,

\hookrightarrow (a+\dfrac{1}{a})^{3}=1^{3}

\hookrightarrow a^{3}+3a+\dfrac{3}{a}+\dfrac{1}{a^{3}}=1

\hookrightarrow a^{3}+3(a+\dfrac{3}{a})+\dfrac{1}{a^{3}}=1

Finding the product,

\hookrightarrow a^{3}+3+\dfrac{1}{a^{3}}=1\implies\therefore a^{3}+\dfrac{1}{a^{3}}=-2

\hookrightarrow (a^{2}+\dfrac{1}{a^{2}})(a^{3}+\dfrac{1}{a^{3}})=a^{5}+a+\dfrac{1}{a}+\dfrac{1}{a^{5}}

\hookrightarrow a^{5}+a+\dfrac{1}{a}+\dfrac{1}{a^{5}}=2

\hookrightarrow a^{5}+1+\dfrac{1}{a^{5}}=2

Hence, the required answer:-

\hookrightarrow a^{5}+\dfrac{1}{a^{5}}=1

Answered by brainlyanswerer83
129

Hey Mate,

Given Question:-

→  If \frac{a + 1 }{a} = 9 Then, calculate \frac{a^6 + 1}{a^3}

To Find:-

→ The Value of,  \frac{a^6 + 1}{a^3}, if  a + \frac{1}{a} = \frac{9}{}

Formula Used :-

→ ( α + b)³ = α³ + 3α²b + 3αb²+ b³

Solution:-

Step 1 ⇒ Let's simplify the value.

Step 2(a + \frac{1}{a} )^3 = 9^3

Step 3 ⇒ a^3 + 3a + \frac{3}{a} + \frac{1}{a^3} = 729

→ Step 4 ⇒ a^3  + 3( a + \frac{1}{a} ) + \frac{1}{a^3} = 729

→ Step 5 ⇒ a^3 + 3 × 9 + \frac{1}{a^3} = 729

Step 6 ⇒ a^3 + 27 + \frac{1}{a^3} = 729

→ Step 7 ⇒ a^3 +\frac{1}{a^3}  = 702

→ The Required value is 702.

simplification in the attachment , you will get the perfect solution.  

Attachments:
Similar questions