Math, asked by SwAtHiiii, 1 year ago

Hi frndz. Solve this.

Attachments:

SwAtHiiii: Call
SwAtHiiii: Love uuuuuu
SwAtHiiii: Nthng
Anonymous: for fun..........
Anonymous: for fun.....

Answers

Answered by Anonymous
9

\textsf{Given :}

sin\alpha=msin\beta

\implies sin^2\alpha=m^2sin^2\beta

\implies \frac{m^2}{sin^2\alpha}=\frac{1}{sin^2\beta}

Using the identity : sinA=\frac{1}{cosecA}

\implies m^2cosec^2\alpha=cosec^2\beta ...........( 1 )

\textsf{Also it is given that : }

tan\alpha=ntan\beta

\implies tan^2\alpha=n^2tan^2\beta

\implies \frac{n^2}{tan^2\alpha}=\frac{1}{cot^2\beta}

Using the identity : tanA=\frac{1}{cotA}

\implies n^2cot^2\alpha}=cot^2\beta ...........( 2 )

Subtracting ( 2 ) from ( 1 ) we get :

cosec^2\beta-cot^2\beta=m^2cosec^2\alpha-n^2cot^2\beta

\implies 1 = m^2cosec^2\alpha-n^2cot^2\alpha

Use these identities : cosecA=\frac{1}{sinA}

                                    cotA=\frac{cosA}{sinA}

\implies \frac{m^2}{sin^2\alpha}-\frac{n^2cos^2\alpha}{sin^2\alpha}=1

\implies \frac{1}{sin^2\alpha}(m^2-n^2cos^2\alpha)=1

\implies m^2-n^2cos^2\alpha=sin^2\alpha

\implies m^2-n^2cos^2\alpha=1-cos^2\alpha

\implies cos^2\alpha-n^2\alpha=1-m^2

\implies cos^2\alpha(1-n^2)=1-m^2

\implies cos^2\alpha=\frac{1-m^2}{1-n^2}

\implies cos^2\alpha=\frac{(-1)(m^2-1)}{(-1)(n^2-1)}

\implies \boxed{cos^2\alpha=\frac{m^2-1}{n^2-1}}[P.R.O.V.E.D]

Hope I helped u :-)

_____________________________________________________________________



sai7932: badakao
Anonymous: saier pod khule hate chole esche mone hoye :-)
Similar questions