Hi guys gm...
If a+b=5 and a2+b2=11 then prove that a3+b3=20
Answers
Identities:
Identity I: (a + b)2 = a2 + 2ab + b2
Identity II: (a – b)2 = a2 – 2ab + b2
Identity III: a2 – b2= (a + b)(a – b)
Identity IV: (x + a)(x + b) = x2 + (a + b) x + ab
Identity V: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Identity VI: (a + b)3 = a3 + b3 + 3ab (a + b)
Identity VII: (a – b)3 = a3 – b3 – 3ab (a – b)
Identity VIII: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
Solution:
given in the question: a + b = 5, a² + b² = 11
what to prove: a³ + b³ = 20
using the Identity I: (a + b)2 = a2 + 2ab + b2
5)² = 11 + 2ab
25 = 11 + 2ab
2ab = 25 - 11
2ab = 14
ab = 14 / 2
ab = 7
Identity VI: (a + b)3 = a3 + b3 + 3ab (a + b)
RHS: (a + b)(a² + b² - ab)
Putting given values in it.
We get
= (5)(11 - 7)
= 5 × 4
= 20
= L.H.S.
Hence, proved.
HOPE THIS HELPS YOU
HAVE A GOOD DAY :)