Computer Science, asked by Anonymous, 11 months ago

HI GUYS


GOOD EVENING

IMAGE ATTACHED ANSEWER




For each of the following numbers, find the smallest whole number by which it should
be multiplied so as to get a perfect square number. Also find the square root of the
square number so obtained
252
180
1008
2028
1458
768​

Answers

Answered by vishakaa
6

HIII NANCY....

HERE IS YOUR ANSWER...

GOOD EVENING...

YOUR DAY WILL GO VERY WELL....

sorry I have some problem for sending image so I will send u my answer in words...

(i) 252

Answer: By prime factorisation we get,

252 = 2 x 2 x 3 x 3 x 7

Here, 2 and 3 are in pairs but 7 needs a pair. Thus, 7 can become pair after multiplying 252 with 7.

So, 252 will become a perfect square when multiplied by 7.

Thus, Answer = 7

(ii) 180

Answer: By prime factorisation, we get, 180 = 3 x 3 x 2 x 2 x 5

Here, 3 and 2 are in pair but 5 needs a pair to make 180 a perfect square.

180 needs to be multiplied by 5 to become a perfect square.

Thus, Answer = 5

(iii) 1008

Answer: By prime factorisation of 1008, we get

1008 = 2 x 2 x 2 x 2 x 3 x 3 x 7

Here, 2 and 3 are in pair, but 7 needs a pair to make 1008 a perfect square.

Thus, 1008 needs to be multiplied by 7 to become a perfect square

Hence, Answer = 7

(iv) 2028

Answer: By prime factorisation of 2028, we get

2028 = 2 x 2 x 3 x 13 x 13

Here, 2 and 13 are in pair, but 3 needs a pair to make 2028 a perfect square.

Thus, 2028 needs to be multiplied by 3 to become a perfect square.

Hence, Answer = 3

(v) 1458

Answer: By prime factorisation of 1458, we get

1458 = 2 x 3 x 3 x 3 x 3 x 3 x 3

Here, 3 are in pair, but 2 needs a pair to make 1458 a perfect square.

So, 1458 needs to be multiplied by 2 to become a perfect square.

Therefore, Answer = 2

(vi) 768

Answer: By prime factorisation of 768, we get

768 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3

Here, 2 are in pair, but 3 needs a pair to make 768 a perfect square.

So, 768 needs to be multiplied by 3 to become a perfect square.

Hence, Answer = 3

Answered by Anonymous
31

SOLUTION

Refer to the attachment

hope it helps ☺️

Attachments:
Similar questions