Math, asked by anaghack06, 1 month ago

Hi guys pl show it step by step..!​

Attachments:

Answers

Answered by 12thpáìn
74

 \sf{Prove \:  that :  \bf\dfrac{2^{x-1}+2^x}{2^{x+1}  { - 2}^{x} }=\dfrac{3}{2}}

let,

 \sf{LHS= \dfrac{2^{x-1}+2^x}{2^{x+1}  { - 2}^{x} }}

 \sf{RHS= \dfrac{3}{2}}

  • On solving LHS we get

 \sf{~~~~~:\implies LHS= \dfrac{2^{x-1}+2^x}{2^{x+1}  { - 2}^{x} }}

  • Taking 2^{x} common

 \sf{~~~~~:\implies LHS= \dfrac{ {2}^{x} (2^{-1}+1)}{2 ^{x} (2^{1}   - 1 )}}

\sf{~~~~~:\implies LHS= \dfrac{  \dfrac{1}{2} +1}{2  - 1 }}

\sf{ ~~~~~:\implies LHS= \dfrac{  \dfrac{2 + 1}{2}}{1 }}

\sf{~~~~~:\implies LHS=   \dfrac{3}{2} \times 1}

\sf{~~~~~:\implies LHS=   \dfrac{3}{2} }

 { \bf \: LHS= RHS }~~_{verified}

Similar questions