Math, asked by khushijindal60, 1 year ago

hi guys
please help me out

Attachments:

Anonymous: hi... kushi... do you know yash...
Anonymous: how
Anonymous: I'm his best friend or like a sister
Anonymous: khushi...
Anonymous: oo

Answers

Answered by Swarup1998
12

Solution :

1.

Question :

   If a, b, c are in G.P., then a correct statement is

         a) a = bc

         b) b² = ac

         c) c = ab

         d) a² = bc

Answer :

    If a, b, c are in G.P. then the correct statement is

         Option (b) ↬ b² = ac

2.

Question :

    The common ration of 0.04 + 0.02+ 0.01 + ... is

         a) 1/2

         b) 1/3

         c) 2

         d) 3

Answer :

    The G.P. is 0.04 + 0.02 + 0.001 + ...

So, the common ratio

  = (2nd term)/(1st term)

     = 0.02 / 0.04

        = 0.5

           = 1/2

        Option (a) ↬ 1/2 is correct

3.

Question :

    If the nth term of a G.P. is 2*(0.5)ⁿ⁻¹, then the common ratio is

         a) 0.2

        b) 5

         c) 0.5

         d) 2

Answer :

    The nth term of the G.P.

= 2*(0.5)ⁿ⁻¹

Then, (n-1)th term of the G.P.

= 2*(0.5)ⁿ⁻²

So, the common ratio

= (nth term) / {(n-1)th term}

= {2*(0.5)ⁿ⁻¹} / {2*(0.5)ⁿ⁻²}

= 1/{(0.5)⁻¹}

= 0.5

        Option (c) ↬ 0.5 is correct

4.

Question :

    The common ratio of the G.P. 1 - 1/2 + 1/4 - 1/8 + ... is

         a) -1/2

         b) 1/2

         c) -2

         d) 3

Answer :

    The G.P. is 1 - 1/2 + 1/4 - 1/8 + ...

Then, common ratio

= (-1/2) / (1) = -1/2

= (1/4) / (- 1/2) = -1/2

         Option (a) ↬ (-1/2) is correct

5.

Question :

    If kᵃ, kᵇ, kᶜ are in G.P., then a, b, c are in

         a) H.P.

         b) A.P.

         c) G.P.

         d) can't say

Answer :

    Given kᵃ, kᵇ and kᶜ are in G.P.

Then, (kᵇ)² = kᵃ * kᶜ

or, k²ᵇ = kᵃ * kᶜ

Taking (log) to both sides, we get

log(k²ᵇ) = log(kᵃ * kᶜ)

or, 2b logk = a logk + c logk

or, 2b = a + c ,

which prescribes an A.P.

Thus, a, b, c are in A.P.

        Option (b) ↬ A.P. is correct

6.

Question :

    The nth term of the G.P. 8, 24, 72, 216, ... is

         a) 2³ 3ⁿ⁻¹

        b) 3² 3ⁿ⁻¹

         c) 2³ 3ⁿ

         d) 2³ 3ⁿ⁺¹

Answer :

    The G.P. is (a =) 8, 24, 72, 216, ...

Common ratio (r) = 24/8 = 3

So, nth term = a * rⁿ⁻¹

= 8 * 3ⁿ⁻¹

= 2³ * 3ⁿ⁻¹

         Option (a) ↬ 2³ * 3ⁿ⁻¹ is correct

7.

Question :

    The reciprocal of a G.P. is

        a) A.P.

         b) G.P.

        c) H.P.

         d) none

Answer :

    Reciprocal of a G.P. is a G.P.

         Option (b) ↬ G.P. is correct


Swarup1998: Morning :) my pleasure
Anonymous: hi..
Mankuthemonkey01: Great Dada
Similar questions