Math, asked by soh2, 1 year ago

hi guys, please solve this question fast :::::

prove that ,
 \tan( \alpha  )  + 2 \tan(2 \alpha )  + 4 \cot(4 \alpha )  =  \cot( \alpha )


Answers

Answered by JinKazama1
3
We know that,
Steps:
1)
 \cot( \alpha )  -  \tan( \alpha )  \\  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } \\  =  \frac{ {( \cos( \alpha ) )  }^{2} -  { (\sin( \alpha ) )}^{2}  }{ \sin( \alpha ) \cos( \alpha )  }   \times  \frac{2}{2} \\  =  \frac{2 \cos(2 \alpha ) }{ \sin(2 \alpha ) }  = 2 \cot(2 \alpha )
Similarly,
2)
2 \cot(4 \alpha )  =  \cot(2 \alpha )  -  \tan(2 \alpha )   \\  -  -  - (1)
Now, 3)
 \tan( \alpha )  + 2 \tan(2 \alpha )  + 4 \cot(4 \alpha )  \\  =  \tan( \alpha )  +  2 \tan(2 \alpha )  +  \\  \:  \:  \:  \: 2( \cot(2 \alpha )  -  \tan(2 \alpha ))  \\  =  \tan( \alpha )  + 2 \cot(2 \alpha )  \\  =  \tan( \alpha )  +  \frac{2}{ \frac{2 \tan( \alpha ) }{1 -  {( \tan( \alpha )) }^{2} } }  \\  =  \tan( \alpha )  +  \frac{1 -  { (\tan( \alpha ) )}^{2} }{ \tan( \alpha ) }  \\  =  \tan( \alpha )  +  \cot( \alpha )  -  \tan( \alpha )  \\  =  \cot( \alpha )

Similar questions