Math, asked by izukuOwO, 29 days ago

hi guys pls help me with this question. 4x-5y=6;5x+5y=6​

Answers

Answered by BrainlyTwinklingstar
4

Answer

\sf \dashrightarrow 4x - 5y = 6 \: \: --- (i)

\sf \dashrightarrow 5x + 5y = 6 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 4x - 5y = 6

\sf \dashrightarrow 4x = 6 + 5y

\sf \dashrightarrow x = \dfrac{6 + 5y}{4}

Now, we can find the value of y by second equation.

\sf \dashrightarrow 5x + 5y = 6

\sf \dashrightarrow 5 \bigg( \dfrac{6 + 5y}{4} \bigg) + 5y = 6

\sf \dashrightarrow \dfrac{30 + 25y}{4} + 5y = 6

\sf \dashrightarrow \dfrac{30 + 25y + 20y}{4} = 6

\sf \dashrightarrow \dfrac{30 + 45y}{4} = 6

\sf \dashrightarrow 30 + 45y = 4 \times 6

\sf \dashrightarrow 30 + 45y = 24

\sf \dashrightarrow 45y = 25 - 30

\sf \dashrightarrow 45y = -5

\sf \dashrightarrow y = \dfrac{-5}{45}

\sf \dashrightarrow y = \dfrac{-1}{9}

Now, we can find the value of x by first equation.

\sf \dashrightarrow 4x - 5y = 6

\sf \dashrightarrow 4x - 5 \bigg( \dfrac{-1}{9} \bigg) = 6

\sf \dashrightarrow 4x - \dfrac{-5}{9} = 6

\sf \dashrightarrow 4x = 6 + \dfrac{-5}{9}

\sf \dashrightarrow 4x = \dfrac{54 + (-5)}{9}

\sf \dashrightarrow 4x = \dfrac{49}{9}

\sf \dashrightarrow x = \dfrac{49}{9} \times \dfrac{1}{4}

\sf \dashrightarrow x = \dfrac{49}{36}

Hence, the values of x and y are \sf \dfrac{49}{36} and \sf \dfrac{-1}{9} respectively.

Similar questions