Math, asked by Anonymous, 1 year ago

Hi guyz ❤️❤️
Pls give the correct answer for the above question and explain it with details (step by step)

Don't spam ❌❌​

Attachments:

Answers

Answered by Anonymous
28

Solution :-

Given :-

2f(x²) + 3f(1/x²) = x² - 1 ....(i)

x belongs to R - {0}

Now we will find out the f(x²) first and then we will replace x² from x⁴ from the equation.

Now :-

By replacing x² as 1/x² and 1/x² as x² in the function

 \rightarrow 2f\left(\dfrac{1}{x^2}\right) + 3f(x^2) = \dfrac{1}{x^2} - 1 .....(ii)

Now we will eliminate the 1/x² from the equation. by 2(i) - 6(ii)

 4f\left(x^2\right) + 6f\left(\dfrac{1}{x^2}\right) = 2x^2 - 2

 - 6f\left(\dfrac{1}{x^2}\right) - 3f(x^2) = -3\dfrac{1}{x^2} + 3

 \rightarrow -5f(x^2) = 2x^2 - 2 + 3 - 3\dfrac{1}{x^2}

 \rightarrow -5f(x^2) = 2x^2 + 1 - 3\dfrac{1}{x^2}

 \rightarrow -5f(x^2) = \dfrac{2x^4 + x^2 - 3}{x^2}

  \rightarrow f(x^2) = \dfrac{2x^4 + x^2 - 3}{-5x^2}

  \rightarrow f(x^2) = \dfrac{3 - 2x^4 - x^2 }{5x^2}

 \rightarrow f(x^2) = \dfrac{ 3 - 3x^2 + 2x^2 - 2x^4 }{5x^2}

 \rightarrow f(x^2) = \dfrac{ 3(1 - x^2) + 2x^2(1 - x^4)}{5x^2}

 \rightarrow f(x^2) = \dfrac{(1-x^2)(2x^2 + 3)}{5x^2}

Now we will replace x² with x⁴ in the function

 \rightarrow f(x^4) = \dfrac{(1-x^4)(2x^4 + 3)}{5x^4}

So Answer is option (a)

Answered by anu24239
9

\huge\mathfrak\red{Answer}

2f( {x}^{2} ) + 3f( \frac{1}{ {x}^{2} } ) =  {x}^{2}  - 1 \\  \\ put \: x =  \frac{1}{x}  \\  \\ 2f( \frac{1}{ {x}^{2} } ) + 3f( {x}^{2} ) =  \:  \frac{1}{ {x}^{2} }  - 1 \\  \\ now \: you \: have \: two \: equations \\ and \: all \: the \: 95 \: percentile \: girls \ \\  know \: how \: to \: solve \\  \\ let \: f( \frac{1}{ {x}^{2} } ) = m \\ f( {x}^{2} ) = n \\  \\ two \: equations \\  \\ 2n + 3m =  {x}^{2}  - 1 \\ 3n + 2m =  \frac{1}{ {x}^{2} }  - 1 \\  \\ eleminate \: m  \\  \\ MULTIPLY \: by \: 2 \: and \: by \: 3 \: in \\ eq(1) \: and \: eq(2) \: and \: subtract \: both \: \\  the \: equation \\  \\ 4n - 9n = 2 {x}^{2}  - 2 -  \frac{3}{ {x}^{2} }  - 3 \\  - 5n = 2 {x}^{2}  -  \frac{3}{ {x}^{2} }  - 5 \\  \\ 5n =  - 2 {x}^{2}  +  \frac{3}{ {x}^{2} }  + 5 \\  \\ 5n =  \frac{ - 2 {x}^{4}  + 3 + 5 {x}^{2} }{ {x}^{2} }  \\  \\ n =  \frac{ - 2 {x}^{4}  + 5 {x}^{2}  + 3}{5 {x}^{2} }  \\  \\ n =  \frac{ - 2 {x}^{4}  +  3 {x}^{2}  -  2 {x}^{2} + 3 }{5 {x}^{2} }  \\  \\ n =  \frac{  - {x}^{2}(2 {x}^{2}  - 3) - 1(2 {x}^{2}   - 3)}{5 {x}^{2} }  \\  \\ n =  \frac{ - (2 {x}^{2}  - 3)( {x}^{2} - 1) }{5 {x}^{2} }  \\  \\ put \: the \: original \: value \: of \: n \\  \\ f( {x}^{2} ) =  \frac{ - (2 {x}^{2}  - 3)( {x}^{2} - 1) }{5 {x}^{2} }  \\  \\ put \: x =  {x}^{2}  \\  \\ f( {x}^{4} ) =   \frac{(1 -  {x}^{4} )(2 {x}^{4}  - 3)}{5 {x}^{4} }

PRECAUTIONS

  • YOU CAN USE THIS METHOD ONLY AND ONLY WHEN THE GIVEN EQUATION HAVE SOME COFFECIENT EXCEPT 1
  • IF THE EQUATION HAVE CONJUGATED PLUS AND MINUS SIGN.

Similar questions