hi
I have heard many things about this app, so plz help me if you can. if x is equal to 2 plus root 3. find x square plus 1 by x square.
Thanku ...
Answers
Answered by
159
Hi there !
______________________
Given :
x = 2 + √3
To find :
x² + 1 / x²
Solution :
1/x = 1 / 2 + √3 × 2 - √3 / 2 - √3
1 / x = 2 - √3 / (2)² - (√3)²
1 / x = 2 - √3 / 4 - 3
1 / x = 2 - √3
Now,
= x + 1 / x
= 2 + √3 + 2 - √3
= 2 + 2
= 4
Now,
(x + 1 / x)² = (4)²
=> x² + 1 / x² + 2 = 16
=> x² + 1 / x² = 16 - 2
=> x² + 1 / x² = 14
Hence,
The required answer is
x² + 1 / x² = 14.
_______________________
Thanks for the question !
Ashishkumar098:
No more comments please
Answered by
103
Answer :-
______________________________
Given ,
x = 2 + √3
To find ,
• The value of : x² + 1 / x²
Now ,
If ,
x = 2 + √3
Then ,
1 / x = 1 / ( 2 + √3 )
= 1 / ( 2 + √3 ) × ( 2 - √3 ) / ( 2 - √3 )
= ( 2 - √3 ) / { ( 2 )² - ( √3 )² }
= ( 2 - √3 ) / ( 4 - 3 )
= ( 2 - √3 ) / 1
= ( 2 - √3 )
Now ,
( x + 1 / x )
= ( 2 + √3 + 2 - √3 ) [ • Putting the values ]
= 2 + 2
= 4
Therefore ,
x² + 1 / x²
= ( x + 1 / x )² - 2 . x . 1 / x
[ • Using Identity ]
= ( 4 )² - 2 [ • Putting the value ]
= 16 - 2
= 14 [ ★ Required answer ]
__________________________________
★ Be Brainly ★
______________________________
Given ,
x = 2 + √3
To find ,
• The value of : x² + 1 / x²
Now ,
If ,
x = 2 + √3
Then ,
1 / x = 1 / ( 2 + √3 )
= 1 / ( 2 + √3 ) × ( 2 - √3 ) / ( 2 - √3 )
= ( 2 - √3 ) / { ( 2 )² - ( √3 )² }
= ( 2 - √3 ) / ( 4 - 3 )
= ( 2 - √3 ) / 1
= ( 2 - √3 )
Now ,
( x + 1 / x )
= ( 2 + √3 + 2 - √3 ) [ • Putting the values ]
= 2 + 2
= 4
Therefore ,
x² + 1 / x²
= ( x + 1 / x )² - 2 . x . 1 / x
[ • Using Identity ]
= ( 4 )² - 2 [ • Putting the value ]
= 16 - 2
= 14 [ ★ Required answer ]
__________________________________
★ Be Brainly ★
Similar questions