hi mates please help me to solve this...
Attachments:
Answers
Answered by
1
Hope this helps you.
Attachments:
tanushri04:
thanks..
Answered by
3
SOLUTION.
====LHS===
(1 + tan^A)+(1+ 1/tan^A)
➡sec^A + (1 + cot^A)
➡sec^A + cosec^A
➡1/cos^A + 1/sin^A
➡(sin^A+cos^A)÷sin^A cos^A
➡1/sin^Acos^A
===RHS======
1 ÷ (sin^A - sin*A)
1 ÷ sin^A (1-sin^A)
1 ÷ sin^A cos^A
1/sin^Acos^A
[where symbol ^ is 2 and symbol * is 4.]
So, LHS = RHS
HENCE, PROVED
☆☆☆☆☆ HOPE THIS WILL HELP YOU......
====LHS===
(1 + tan^A)+(1+ 1/tan^A)
➡sec^A + (1 + cot^A)
➡sec^A + cosec^A
➡1/cos^A + 1/sin^A
➡(sin^A+cos^A)÷sin^A cos^A
➡1/sin^Acos^A
===RHS======
1 ÷ (sin^A - sin*A)
1 ÷ sin^A (1-sin^A)
1 ÷ sin^A cos^A
1/sin^Acos^A
[where symbol ^ is 2 and symbol * is 4.]
So, LHS = RHS
HENCE, PROVED
☆☆☆☆☆ HOPE THIS WILL HELP YOU......
Similar questions