Math, asked by Anonymous, 1 year ago

Hi!:)

No Spamming!!

Prove the given questions in attachment!!​

Attachments:

Answers

Answered by rifawafaraif3
6

Answer:

Step-by-step explanation:

Here u go

Sry abt the handwriting

Hope it is helpful

(2 and 3 )

Attachments:

Anonymous: where is it?
rifawafaraif3: Did u get?
Anonymous: what about other question?
rifawafaraif3: Ill try
rifawafaraif3: I m new ill upload it wait
Anonymous: Kk
rifawafaraif3: Here2nd
Answered by nain31
35
 \huge \bold{ANSWER}

 \huge \boxed{\frac{sin \theta}{1- cot \theta} + \frac{cos\theta}{1- tan \theta} = cos \theta + sin \theta}

On taking left hand side,

 \large{\frac{sin \theta}{1- cot \theta} + \frac{cos\theta}{1- tan \theta}}

Since,

 \boxed{tan\theta = \frac{sin \theta }{cos \theta}}

and

 \boxed{cot\theta = \frac{cos \theta }{sin \theta}}

 \frac{sin \theta}{1- \frac{sin \theta}{cos \theta}} + \frac{cos\theta}{1- \frac{cos \theta}{sin \theta}}

 \frac{sin \theta}{ \frac{sin \theta - cos \theta}{sin \theta}}+ \frac{cos \theta}{ \frac{cos \theta - sin \theta}{cos \theta}}

 \frac{{sin}^{2} \theta}{sin \theta - cos \theta}+\frac{{cos}^{2} \theta}{cos \theta - sin \theta}

 \frac{{sin}^{2} \theta}{cos \theta - sin \theta} - \frac{{cos}^{2} \theta}{cos \theta - sin \theta}

 \frac{{cos}^{2} - {sin}^{2}}{cos \theta - sin \theta}

 \frac{(cos \theta - sin \theta )(cos \theta + sin \theta)}{cos \theta - sin \theta}

 \frac{ \cancel{(cos \theta - sin \theta )}(cos \theta + sin \theta)}{ \cancel{cos \theta - sin \theta}}

 cos \theta + sin \theta = R.H.S

Hence Proved!!!!

 \huge \boxed{ \frac{sin \theta - 2 {sin}^{3}\theta}{2 {cos}^{3} - cos \theta}}

On taking sin as common in numerator and cos as common in denominator,

 \frac{sin \theta (1-2 \times{sin}^{2} \theta)}{cos \theta(2 \times {cos}^{2} \theta -1)}

Since,

 \boxed{ \frac{sin \theta }{cos \theta}= tan\theta}

and

 {sin}^{2} \theta = (1- {cos}^{2} \theta)

 tan\theta\times\frac{(1-2 \times (1- {cos}^{2} \theta)}{cos \theta(2 {cos}^{2} \theta -1)}

 tan\theta\times\frac{(1-2 + 2 {cos}^{2} \theta)}{(2 {cos}^{2} \theta -1)}

tan\theta\times \frac{\cancel{(-1+ 2 {cos}^{2} \theta)}}{\cancel {(2 {cos}^{2} \theta -1)}}

tan \theta=R.H.S

HENCE PROVED!!

 \huge \boxed{(1+cot \theta - cosec \theta)\times(1-tan \theta + sec \theta) =2}

On taking left hand side ,

Since,

 \boxed{cot \theta =\frac{cos\theta }{sin \theta}}

 \boxed{tan\theta =\frac{sin\theta }{cos \theta}}

 ( 1 + \frac{cos \theta}{sin \theta} - \frac{1}{sin \theta})(1+\frac{sin \theta}{cos \theta}+ \frac{1}{cos\theta})

 \frac{sin \theta +cos \theta -1}{sin\theta} \times\frac{cos \theta +sin \theta +1}{cos\theta}

On multiplying,

 \dfrac{sin \theta \times cos \theta+ {sin}^{2} \theta - sin \theta + {cos}^{2} \theta + sin \theta \times cos \theta + cos \theta- cos \theta -sin\theta-1}{sin \theta \times cos \theta}

Since,

 {sin}^{2} + {cos}^{2} =1

On solving we get,

\frac{2 sin \theta \times cos \theta+ 1- 1}{sin \theta \times cos \theta}

 \frac{2 \times \cancel{sin \theta \times cos \theta}+ 1- 1}{ \cancel{sin \theta \times cos \theta}}

▶2 =R.H.S

HENCE PROVED!

biologyking1977: nice dear ✔️ ☺️
nain31: =_=" bhai kuch bhi ,Thank u BTW
tausif59: Ohh !! Motii !! Super se upar
Similar questions