Math, asked by f1931, 2 months ago

hi please answer me bhai ppease​

Attachments:

Answers

Answered by nariseamalavathi
0

2 {}^{ - x}  \times  {2}^{10}  =  {2}^{3x}  \times  {2}^{ - 2}  \\   =  > \frac{1}{2 {}^{x} }  \times  {2}^{10}  =  {2}^{3x}  \times  \frac{1}{ {2}^{2} }  \\  =  >  {2}^{10}  \times  {2}^{2}  =  {2}^{3x}  \times 2 {}^{x}  \\  =  >  {2}^{10 + 2}  = 2 {}^{3x + x}  \\  =  >  {2}^{12}  =  {2}^{4x}  \\ bases \: are \: equal \: we \: should \: equal \\  \: the \: powers \\  =  > 12 = 4x \\x =  \frac{12}{4}   =  > x = 3 \\ formulas \: used \: .. \\  1) \: {a}^{ -n }  =  \frac{1}{ {a}^{n} } \\ 2) {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

Answered by souravsarkar045
0

Answer:

Answer is 3

Step-by-step explanation:

\  \  \  \  \ 2^{-x}\times2^{10} = 2^{3x}\times2^{-2} \\ \implies \frac{2^{-x}}{2^{3x}}=\frac{2^{-2}}{2^{10}}\\ \implies 2^{(-x-3x)}=2^{(-2-10)} \\ \implies 2^{-4x} = 2^{-12}\\  \implies-4x = -12\\  \implies x = \frac{12}{4}\\  \implies x = 3

Similar questions