Math, asked by comando123, 1 year ago

hi

show that the square of any positive integer is of the form 5m,5m+1 and 5m+4

Answers

Answered by fanbruhh
7
 \huge \bf{ \red{hey}}

 \huge{ \mathfrak{ \blue{here \: is \: answer}}}

let a be any positive integer

then

b= 5

a= bq+r

0≤r<b

0≤r<5

r= 0,1,2,3,4

case 1.

r=0

a= bq+r

5q+0

(5q)^2

25q^2

5(5q^2)

let 5q^2 be m

=> 5m

case 2.

r=1

a= 5q+1

(5q+1)^2

(5q)^2+2*5q*1+(1)^2

25q^2+10q+1

5(5q^2+2q)+1

let 5q^2+2q be m

=> 5m+1

case3.

r=2

a=5q+2
(5q+2)^2

(5q)^2+2*5q*2+(2)^2

25q^2+20q+4

5(5q^2+4q)+4

let 5q^2+4q be m

=> 5m+4

case4
r=

a=5q+3

(5q+3)^2

(5q)^2+2*5q*3+(3)^2

25q^2+30q+9

25q^2+30q+5+4

5(5q^2+6q+1)+4

let 5q^2+6q+1 be m

=>5m+4

case 5.

r=4

a=5q+4

(5q+4)^2

(5q)^2+2*5q*4+(4)^2

25q^2+40q+16

25q^2+40q+15+1

5(5q^2+8q+3)+1

let 5q^2+8q+3 be m

=> 5m+1

hence from above it is proved that square of any positive integer is of the form

5m, 5m+1 & 5m+4


 \huge \boxed{ \boxed{ \green{HOPE\: IT \: HELPS}}}

 \huge{ \pink{thanks}}
Answered by khushithegreatsister
2
hi

here is answer





b= 5

a= bq+r

0≤r<b

0≤r<5

r= 0,1,2,3,4

case 1.

r=0

a= bq+r

5q+0

(5q)^2

25q^2

5(5q^2)

let 5q^2 be m

=> 5m

case 2.

r=1

a= 5q+1

(5q+1)^2

(5q)^2+2*5q*1+(1)^2

25q^2+10q+1

5(5q^2+2q)+1

let 5q^2+2q be m

=> 5m+1

case3.

r=2

a=5q+2
(5q+2)^2

(5q)^2+2*5q*2+(2)^2

25q^2+20q+4

5(5q^2+4q)+4

let 5q^2+4q be m

=> 5m+4

case4
r=

a=5q+3

(5q+3)^2

(5q)^2+2*5q*3+(3)^2

25q^2+30q+9

25q^2+30q+5+4

5(5q^2+6q+1)+4

let 5q^2+6q+1 be m

=>5m+4

case 5.

r=4

a=5q+4

(5q+4)^2

(5q)^2+2*5q*4+(4)^2

25q^2+40q+16

25q^2+40q+15+1

5(5q^2+8q+3)+1

let 5q^2+8q+3 be m

=> 5m+1

hence from above it is proved that square of any positive integer is of the form

5m, 5m+1 & 5m+4


thanks
Similar questions