Physics, asked by Anonymous, 1 year ago

hi,
..
.
.
.
solve this question step by step​

Attachments:

Answers

Answered by Anonymous
35

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf H=10mm\:of\:Hg}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Density of air (\sf{\rho_{air}) =1.295 kgm^{-3}}

  • Height above he sea level (h)=107m

  • Density of mercury (\sf{\rho_{mercury} =13.6×10^3kgm^{-3}}

\large\underline\pink{\sf To\:Find: }

  • Fall in barometric height (H) = ?

━━━━━━━━━━━━━━━━━━━━━━━━

\large{♡}{\boxed{\sf Decrease\:in\: Pressure\:of\:air=\rho gh }}

\large\implies{\sf 1.295×g×107\:Pa }

\large\implies{\sf 138.565g\:Pa}

\large{♡}{\boxed{\sf Decrease\:in\: Pressure\:of\: mercury=\rho gH }}

Here ,

H = Decrease in barometric height

\large\implies{\sf 13.6×10^3×g×H}

\large{♡}\large{\boxed{\sf H=\frac{\rho_{air} gh}{\rho_{mercury} g}}}

On Putting value :

\large\implies{\sf H= \frac{138.565}{13.6×10^3}}

\large\implies{\sf H=10mm\:of\:Hg}

\huge\red{♡}\large\red{\boxed{\sf H=10mm\:of\:Hg}}

Decrease in barometer height is 10mm of Hg

Answered by Anonymous
1

Answer:

isha you cannot die and cannot leave me pls dont say that you will be offline

Similar questions