Hi solve this.....
Step by step explanation...❤️
❌no spam❌
Answers
Answer:
Step-by-step explanation:
p(n)= 1.3+3.5+5.7+......+(2n-1)(2n+1)= n(4n²+6n-1) / 3
Step-1 :
let n=1 ,
p( 1)=1.3 + 3.5+ 5.7 +.......+[2(1)-1] [2(1)+1] = 1[4(1)² + 6(1) - 1] /3
[2-1] [2+1] = 1 [4+6-1] /3
[1] [3] = 1 [10-1] /3
[3] = 1 [9] /3
3 = 9/3
3 = 3 ,which is true
Step-2 :
let assume that n=k ,
p(k)=1.3+3.5+5.7+..........+ (2k-1) (2k+1) = k(4k²+6k-1) / 3 ⇒ equation (a)
Step-3 :
we shall assume that n=k+1 ,
p(k+1)= 1.3+3.5+5.7+........+ (2k-1)(2k+1) + [2(k+1)-1] [2(k+1)+1]
= k(4k²+6k-1) / 3 + [2k+2-1] [2k+2+1] ⇒ By equation (a)
= k(4k²+6k-1) /3 + [2k+1] [2k+3]
= k(4k²+6k-1) + 3 [ (2k+1)(2k+3) ] / 3
= k [ (2k+1) (k-5) ] + 3 (2k+1) (2k+3) / 3
= 2k+1/3 × [k(k-5) +3(2k+1)]
= 2k+1 / 3 [k²-5k+6k+3]
= 2k+1 / 3 [k²+k+3]
= 2k+1 / 3 [ (k+3) (k+1) ]
= k+1 [ (2k+1) (k+3) ] / 3
Hence,p(k+1) is true , whenever p(k) is true .
Therefore , the statement of PMI is true for all natural number.