Physics, asked by rishikadubey78, 4 months ago

Hi solve trignometry question :-<br />if A, B, and C r interior angles of a triangle ABC then show that Sin B+C/2 = Cos A/2​

Answers

Answered by BawliBalika
35

Given:

• a triangle ABC

• A,B and C are the interior angles of triangle ABC

To Prove:

 \sf \purple { \sin( \frac{B + C}{2} )  =  \cos( \frac{A}{2} )}

Solution:

we know that:

sum of all angles of triangle = 180° [ASP]

so, in ABC,

\sf{A +B+C=180°}

⟹\sf{B+C=180°-A}

\sf{multiplying\:both\:side\:by\: \frac{1}{2}}

 \sf{  \frac{B + C}{2}  =  \frac{180 \degree -A }{2}}

 \sf {  \frac{B + C}{2}  =  \frac{180 \degree}{2}  -  \frac{A}{2}}

 \sf { \frac{B + C}{2}  = 90 \degree -  \frac{A}{2}  \:  \:  \:  \:  \:  \: .....(1)}

Taking L.H.S,

 \sf  \sin( \frac{B + C}{2} )

 \implies  \sf  \sin(90 \degree -  \frac{A}{2} )

 \implies \sf \cos \frac{A}{2}  \:  \:  \:  \: \: \: ( \sin(90 -  \theta)  =  \cos( \theta) )

\implies\sf{R.H.S}

Hence Proved


Anonymous: Nice
IdyllicAurora: Good !
SweetMystery: Perfect :)
QueenOfStars: Great one! :)
Answered by Anonymous
21

Given :

  • A , B and C are interior angles of a ∆ABC.

To Prove :

\sf\sin(\dfrac{B+C}{2})=\cos(\dfrac{A}{2})

Solution:

We know that:

Sum of all Angles the in a triangle is 180°

Then , In ∆ ABC

Sum of the angles = 180°

\sf\angle\:A+\angle\:B+\angle\:C=180\degree

\sf\implies\angle\:B+\angle\:C=180\degree-\angle\:A

Now Divide both sides by 2

\sf\implies\dfrac{\angle\:B+\angle\:C}{2}=\dfrac{180\degree-\angle\:A}{2}

\sf\implies\dfrac{\angle\:B+\angle\:C}{2}=\dfrac{180\degree}{2}-\dfrac{\angle\:A}{2}

\sf\implies\dfrac{\angle\:B+\angle\:C}{2}=90\degree-\dfrac{\angle\:A}{2}

Taking sine of the Angle both sides , Then

\sf\implies\sin(\dfrac{\angle\:B+\angle\:C}{2})=\sin(90\degree-\dfrac{\angle\:A}{2})

\sf\implies\sin(\dfrac{\angle\:B+\angle\:C}{2})=\cos(\dfrac{\angle\:A}{2})

Hence , Proved

_______________

Formula's Used :

\sf1)\sin(90-x)=\cos\:x

\sf2)\cos(90-x)=\sin\:x

\sf3)\tan(90-x)=\cot\:x

\sf4)\sec(90-x)=\csc\:x

\sf5)\cot(90-x)=\tan\:x

\sf6)\csc(90-x)=\sec\:x


IdyllicAurora: Awesome... Meow_Wow... perfection at peaks !!
SweetMystery: Nice Answer :)
QueenOfStars: Beneficent Answer! :D
Similar questions