Math, asked by ansarimadeeha9, 10 months ago

hi,
tan alpha=m/m+1 and tan beta=1/2m+1 find alpha - beta
plz ans

Answers

Answered by Kannan0017
1

Answer:

please refer to the attached

Attachments:
Answered by vijay876751ac2
6

Given :-

  • \sf\ \:  \alpha \:  =  \:  \frac{m}{m \:  +  \: 1}   \:   +  \: \:   \sf\  \beta \:  =  \:  \frac{1}{2m \:  +  \: 1}

To Find :-

  • \sf\ The \: value \: of \:  \: \alpha \: + \:  \beta \:  =  \:

Solution :-

L.H.S = tan ( \alpha \: + \: \beta )

{\large{⇒}}\sf\ \:  \:  \dfrac{tan \:  \alpha \:  +  \: tan \:  \beta}{1 \:  -  \: tan \:  \alpha \: tan \:  \beta}

{\large{⇒}}\sf\ \:  \:  \dfrac{ \frac{m}{m \:  +  \: 1} \:  +  \:  \frac{1}{2m \:  +  \: 1}}{1 \:  -  \: ( \frac{m}{m \:  +  \: 1}) \:  \frac{1}{2m \:  +  \: 1}}

{\large{⇒}}\sf\ \:  \:  \dfrac{\frac{m \: (2n \:  +  \: 1) \:  +  \: m \:  +  \: 1}{\cancel{(m \:  +  \: 1) \: (2m \:  +  \: 1)}}}{\frac{(m \:  +  \: 1) \: (2m \:  +  \: 1) \:  -  \: m}{{\cancel{(m \:  +  \: 1) \: (2m \:  +  \: 1)}}}}

{\large{⇒}}\sf\ \:  \:  \dfrac{{2m}^{2} \:  +  \: m \:  +  \: m \:  +  \: 1}{{2m}^{2} \: {\cancel{ +  \: m}} \:  +  \: {\cancel{2m}} \:  + \: 1 \: {\cancel{ -  \: m}}}

{\large{⇒}}\sf\ \:  \:  \dfrac{2m {}^{2} \: {\cancel{ +  \: 2m \:  +  \: 1}}}{2m {}^{2} \: {\cancel{ +  \: m \:  +  \: 1}}} \:  =  \: 1

Now,

  • tan (  \alpha \: + \: \beta ) = 1
  • tan (  \alpha \: + \: \beta ) = tan 45

Let,

  •  \alpha \: + \: \beta = 45
  •  \alpha \: + \: \beta = {\Large{\sf{\red{\frac{ \pi}{4}}}}}

\sf\ The \: Answer \: will \: be \: \large\sf\frac{ \pi}{4}

\tiny\

Hence, Proved!

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions