Math, asked by brainly218, 1 year ago

hi there

content quality

Find the sum to \mathsf{n} terms of the series  \mathsf{ 1 \: + \: \dfrac{3}{2} \: + \: \dfrac{5}{4} \: + \: \dfrac{7}{8}+.....}.


Steph0303: Is it 7/8 or 8/7 ?
brainly218: wait
brainly218: 7/8
Steph0303: But there is no pattern followed I guess. Only 8/7 makes some pattern with the series
brainly218: 8\7
Steph0303: Oh it is 8/7 ?
brainly218: yes
Steph0303: Ok
Steph0303: No sorry, 7/8 is correct.. I made a mistake :)
brainly218: ok

Answers

Answered by Anonymous
66
\underline{\underline{\mathfrak{\Large{Solution : }}}}





\underline{\mathsf{Given \: Series \longrightarrow 1 \: + \: \dfrac{3}{2} \: + \: \dfrac{5}{4} \: + \: \dfrac{7}{8} \: + \: ..... }}





<br />\textsf{This series is an Arithmetico - Geometric series ,} \\ \textsf{ in this type of sequence each term is product of } \\ \textsf{corresponding A.P. and G.P.}





<br />\textsf{The above series can be expressed as this : } \\ \\ \sf = 1 \: \times \: \dfrac{1}{1} \: + \: \{ 1 \: + \: (2 \: - \: 1)2 \} \dfrac{1}{1 \: \times \: 2} \: + \: \{1 \: + \: (3 \: - \: 1)2 \} \dfrac{1}{1 \: \times \: {2}^{2} } \: + \: \{1 \: + \: (4 \: - \: 1)2 \} \dfrac{1}{1 \: \times \: {2}^{3} } \: + \: .....




\underline{\textsf{For A.P.,}} \\ \\ \sf \implies First \: term \: = \: 1 \\ \\ \sf \implies Common \: difference \: = \: 2 \\ \\ \textsf{Now,} \\ \\ \sf \implies T_n \: = \: a \: + \: (n \: - \: 1)d \\ \\ \sf \implies T_n \: = \: 1 \: + \: ( n \: - \: 1)2 \\ \\ \sf \implies T_n \: = \: 1 \: + \: 2n \: - \: 2 \\ \\ \sf\: \: \therefore \: \: T_n \: = \: 2n \: - \: 1





\underline{\textsf{For G.P.,}} \\ \\ \sf \implies First \: term \: = \: 1 \\ \\ \sf \implies Common \: ratio \: = \: \dfrac{1}{2} \\ \\ \textsf{Now,} \\ \\ \sf \implies T_n \: = \: ar^{( n \: - \: 1)} \\ \\ \sf \implies T_n \: = \: 1 \: \times \: \left(\dfrac{1}{2} \right)^{ ( n \: - \: 1)} \\ \\ \sf\: \: \therefore \: \: T_n \: = \: \dfrac{1}{ {2}^{(n \: - \: 1)} }





\underline{\textsf{Now,}} \\ \\ \sf \implies T_n \: of \: A.G.P \: = \: \dfrac{2n \: - \: 1}{2^{(n \: - \: 1 )}}




<br />\textsf{Let,} \\ \\ \sf \implies S_n \: = \: 1 \: + \: \dfrac{3}{2} \: + \: \dfrac{5}{4} \: + \: \dfrac{7}{8} \: + \: ..... \: + \: \dfrac{2n \: - \: 1}{2^{(n \: - \: 1)} } \qquad...(1)





<br />\textsf{Multiply both sides by common ratio , } \\ \\ \sf \implies \dfrac{1}{2} S_n \: = \dfrac{1}{2} \left\{\: 1 \: + \: \dfrac{3}{2} \: + \: \dfrac{5}{4} \: + \: \dfrac{7}{8} \: +  ..... + \dfrac{2n \: - \: 1}{2^{(n \: - \: 1)} } \right\} \\ \\ \\ \sf \implies\dfrac{1}{2} S_n = \dfrac{1}{2} \: + \: \dfrac{3}{4}  + \dfrac{5}{8} + \dfrac{7}{16}  +  ... + \dfrac{2n \: - \: 3}{ {2}^{(n \: - \: 1)} } \: + \: \dfrac{2n \: - \: 1}{ {2}^{n} } \qquad...(2)





\underline{\textsf{Subtract (2) from (1),}} \\ \\ \sf \implies S_n = 1  +  \dfrac{3}{2} +  \dfrac{5}{4}  +  \dfrac{7}{8}  +  ... +  \dfrac{2n \: - \: 1}{2^{(n \: - \: 1)} } \\ \\ \\ \sf \implies\dfrac{1}{2} S_n  = \dfrac{1}{2} \: + \: \dfrac{3}{4} \: + \: \dfrac{5}{8} \: + \: ... \: + \: \dfrac{2n \: - \: 3}{ {2}^{(n \: - \: 1)} } \: + \: \dfrac{2n \: - \: 1}{ {2}^{n} } \\ \\ \textsf{On Subtraction , we get : } \\ \\ \sf \implies \dfrac{1}{2} S_n \: = \: 1 \: + \: \dfrac{2}{2} \: + \: \dfrac{2}{4} \: + \: \dfrac{2}{8} \: + \: ... \: + \: \dfrac{2}{ {2}^{(n \: - \: 1)} } \: - \: \dfrac{2n \: - \: 1}{ {2}^{n} }




\sf \implies \dfrac{1}{2} S_n \: = \: 1  +  2\left\{ \underbrace{\dfrac{1}{2} \: + \: \dfrac{1}{4} +  \dfrac{1}{8} + ... +  \dfrac{1}{ {2}^{(n \: - \: 1)} }}_{This \: Part \: Forms \: an \: G.P.} \right \} \: - \: \dfrac{2n \: - \: 1}{ {2}^{n} }





<br />\underline{\textsf{For this G.P.,}} \\ \\ \sf \implies First \: term \: = \: \dfrac{1}{2} \\ \\ \\ \sf \implies Common \: difference  = \dfrac{1}{2} \\ \\ \sf \implies Last \: term  =  \dfrac{1}{2^{(n \: - \: 1)}}




<br />\textsf{Let total number of terms is N.} \\ \\ \sf \implies T_N \: = \: ar^{(N \: - \: 1)} \\ \\ \sf \implies \dfrac{1}{2^{(n \: - \: 1)} } =  \dfrac{1}{2} \: \times \: \left \{\dfrac{1}{2} \right \}^{(N \: - \: 1)} \\ \\ \sf \implies \dfrac{1}{ {2}^{(n \: - \: 1)} }  =  \dfrac{1}{2 ^{N }}





\textsf{On Comparison , } \\ \\ \sf \implies N \: = \: n \: - \: 1 \\ \\ \underline{\textsf{Now,}} \\ \\ \sf \implies \dfrac{1}{2}S_n \: = \: 1 \: + 2 \left \{ \dfrac{ \dfrac{1}{2} \left(1 \: - \: \dfrac{1}{2 {}^{n \: - \: 1} } \right)}{1 \: - \: \dfrac{1}{2} } \right \} \: - \: \dfrac{2n \: - \: 1}{ {2}^{n} } \\ \\ \\ \sf \implies \dfrac{1}{2}S_n \: = \: 1 \: + 2 \left \{ \dfrac{ \cancel{\dfrac{1}{2}} \left(1 \: - \: \dfrac{1}{2 {}^{n \: - \: 1} } \right)}{ \cancel{ \dfrac{1}{2} } } \right \} \: - \: \dfrac{2n \: - \: 1}{ {2}^{n} }





\sf \implies \dfrac{1}{2}S_n \: = \: 1 \: + \: 2\left( 1 \: - \: \dfrac{1}{2^{n \: - \: 1}} \right) \: - \: \dfrac{2n \: - \: 1}{2^n} \\ \\ \\ \sf \implies \dfrac{1}{2}S_n \: = \: 1 \: + \: 2 \: - \: \dfrac{2}{2^{n \: - \: 1}} \: - \: \dfrac{2n \: - \: 1}{2^n}




\sf \implies \dfrac{1}{2}S_n \: = \: 3 \: - \: \left( \dfrac{4}{2^n} \: + \: \dfrac{2n \: - \: 1}{2^n} \right) \\ \\ \\ \sf \implies \dfrac{1}{2}S_n \: = \: 3 \: - \: \left( \dfrac{4 \: + \: 2n \: - \: 1}{2^n} \right) \\ \\ \sf \implies \dfrac{1}{2}S_n \: = \: 3 \: - \: \left( \dfrac{ \: 2n \: + \: 3}{2^n} \right)




\sf \implies S_n \: =\: 2 \left( 3 \: - \: \dfrac{2n \: + \: 3}{2^n} \right) \\ \\  \sf \therefore  S_n \: = \: 6 \: - \: \dfrac{2n \: + \: 3}{2^{(n \: - \: 1)} }

HelperToAll: Awesome :)
PrincessNumera: Awesome answer! Great use of latex, fabulous answer !
QGP: Wow! One of the best uses of LaTeX I have ever seen! Great Answer :)
Anonymous: Thanks @Kalpesh Bhaiya @Helpertoall @PrincessNumera and QGP bhaiya ^_^
Tomboyish44: Awesome Answer!
Steph0303: :)
Noah11: You got some Pretty Lit Latex Skills Up your Sleeves!! Keep it up Lad :)
yahootak: wow!Amazing answer . Cool latex skills
Answered by abhi569
45

Given \:  sequence :1 +  \dfrac{3}{2}  +  \dfrac{5}{4}  +  \dfrac{7}{8}  + ....upto \: n \: terms


On observing the given sequence, we get : -

All the numerator are in arithmetic progression, whereas all the denominators are in geometric progressions. There are two progressions ( A.P. and G.P. ). These types of sequences are the part of arithmetico - geometric progressions( AGP ).



Note : For now, don't do anything with 1, solving the remaining part:



Now, there are n - 1 terms.

Given arithmetic progression ( denominator ) : 3 , 5 , 7 ..... upto n - 1 terms

Given geometric progression ( numerator ) : 2 , 4 ( or 2² ) , 8 ( or 2³ )..... upto n - 1 terms.


We know say that the n th term of the sequence should be \dfrac{(n-1)\: th\:term\: of\:AP}{(n-1)\: th\: term\: of\: GP}.


From the properties of arithmetic & geometric progressions, we know : -

• n - 1 th term of AP = a + { ( n - 1 ) - 1 }d = a + ( n - 2 )d

• n - 1 th term of GP = ar^{(n-1) -1}=ar^{n-2}


In the question :

First term of the AP[ excluding 1 ] : 3

Common Difference( b/w APs ) : 5 - 3 = 2

first term of GP : 2

Common ratio( b/w GPs ) : 2 / 4 = 1 / 2, but while solving for last term, we will write as 2 with the required power.


So,
Last term of this series[ excluding 1 ]:\dfrac{3+(n-2)2}{2(2)^{n-2}}=\dfrac{2n-1}{2^{n-1}}



Now,
<br />Sequence \:  is:1 +  \dfrac{3}{2}  +  \dfrac{5}{4}  +  \dfrac{7}{8}  + ..... + \dfrac{2n-1}{2^{n - 1}}

Let the sum of the series be k,


Thus,
k = 1 +  \dfrac{3}{2}  +  \dfrac{5}{4}  +  \dfrac{7}{8}  + ..... + \dfrac{2n-1}{2^{n - 1}} \:  \:  \:  \:  \:  \:  \: \it{...(i)}


Divide by ( 1 / 2 ) on both sides, [ as 1 / 2 is the common ratio of the geometric progression ].

Now,

 \dfrac{k}{2}  =  \dfrac{1}{2}  \bigg \{1 +  \dfrac{3}{2}  +  \dfrac{5}{4}  +  \dfrac{7}{8}  + ..... + \dfrac{2n-3}{2^{n - 2} }+ \dfrac{2n-1}{2^{n - 1}} \bigg\}  \\  \\  \\  \dfrac{k}{2}  = \dfrac{1}{2}  +  \dfrac{3}{4}  +   \dfrac{5}{8}  +  \dfrac{7}{16}  + ..... + \dfrac{2n-1}{2^{n - 1}} + \dfrac{2n-1}{2^{n}}\:  \:  \:  \:  \:  \:  \: \it{...(ii)}



Now, subtracting ( ii ) from ( i ),

k -  \dfrac{k}{2}  = 1 +  \frac{3}{2}  -  \frac{1}{2} +  \frac{5}{4}  -  \frac{3}{4}  +  \frac{7}{8}  -  \frac{5}{8}  + .....\:  + \frac{2n-1}{2^{n - 1}}   - \frac{2n-3}{2^{n - 1}}   -  \frac{2n-1}{2^{n}} \\  \\  \\ k \bigg( \frac{1}{2}  \bigg) = 1 + \bigg \{ \frac{2}{2} +  \frac{2}{4}  +  \frac{2}{8} ..... + \frac{2}{2^{n - 1}}  \bigg \}    -  \frac{2n-1}{2^{n}}   \\  \\  \\  k \bigg( \frac{1}{2}  \bigg) = 1 + \bigg \{1 +  \frac{1}{2} +  \frac{1}{4}  + ..... + \frac{1}{2^{n - 2}}  \bigg \}   -  \frac{2n-1}{2^{n}}


Now, there is an another GP, 1 , 1 / 2, 1 / 4, 2 / 8.... 1 / ( 2^{ n - 2 } ).

Sum of GP = [ a( 1 - r^{ n - 1 } ) ] / [ 1 - r ]

Sum of new GP = [ 1( 1 - { 1 / 2 }^{ n - 1 } ] / [ 1 - 1 / 2 ]


Sum of new GP = 2[ 1 - ( 1 / 2 )^{ n - 1 } ]


Sum of new GP = 2 - [ 2 / 2^{ n - 1 } ]



Thus,


 k \times  \dfrac{1}{2}  = 1 + 2 -  \dfrac{2}{{2}^{n - 1} }   -  \dfrac{2n-1}{2^{n}}  \\  \\  \\ k \times  \dfrac{1}{2}  = 3 -  \frac{{ {2}^{2} } }{2 {}^{n} }  -  \dfrac{2n - 1}{2 {}^{n} }  \\  \\  \\ k \times  \dfrac{1}{2}  =  \dfrac{3.2 {}^{n}  - 4 - 2n  + 1}{2 {}^{n} } \\  \\  \\ k = 2 \times  \frac{3.2 {}^{n}  - 2n - 3}{2 {}^{n} }  \\  \\  \\ k =  \dfrac{6.2 {}^{n}  - 4n - 6}{2 {}^{n} }  \:  \: or \:  \: 6 -  \dfrac{4n + 6}{2 {}^{n} }  \:  \:  or \:  \: 6 -  \dfrac{2n + 6}{2 {}^{n - 1} }



Therefore the sum to \mathsf{n} terms of the series  \mathsf{ 1 \: + \: \dfrac{3}{2} \: + \: \dfrac{5}{4} \: + \: \dfrac{7}{8}+.....} \:\:is\:\: \dfrac{6.2 {}^{n}  - 4n - 6}{2 {}^{n} }  \:  \: or \:  \: 6 -  \dfrac{4n + 6}{2 {}^{n} }  \:  \:  or \:  \: 6 -  \dfrac{2n + 6}{2 {}^{n - 1} }

shivanineha7200: can you answer this question
abhi569: Will try, if I know. Send the link in inbox.
shivanineha7200: I cannot understand
Similar questions