Hi There!
I want to solve a question in mathematics and I want your help...
(Please do not answer meaningless)
Attachments:
Answers
Answered by
2
123*-45-123*55
take 123 common
123(-45-55)
123*(-100)
-12300///
2)(-8)*(567)*(-125)
( 1000)*567
567000
it will be the answer
take 123 common
123(-45-55)
123*(-100)
-12300///
2)(-8)*(567)*(-125)
( 1000)*567
567000
it will be the answer
Medhani272007:
Thank You!
Answered by
2
Hi there!
Here's the answer:
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°
a)
123 × (-45) - 123 × 55
=> [123 × (-45)] + [123 × (-55)]
From Distributive property of Multiplication,
°•° a(b+c) = ab + ac
=> 123 × [ -45 + (-55)]
=> 123 × [ -45 - 55]
=> 123 × (-100)
=> -12300
•°• Required Result = -123000
b)
(-8) × 567 × (-125)
=> 8 × 125 × 567
(As per Associativity property,
a × b = b × a , i.e., change of order of multiplication doesn't affect the result)
For simplicity, take 125 = 25 × 5
=> 8 × (25×5) × 567
=> 25 × 8 × 5 × 567
(As per associativity property of multiplication)
=> 25 × 40 × 567
For simplicity, take 40 = 4×10
=> (25 × 4) × 10 × 567
=> 100 × 10 × 567
=> 567000
•°• Required Result = 567000
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°
¢#£€®$
:)
Hope it helps
Here's the answer:
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°
a)
123 × (-45) - 123 × 55
=> [123 × (-45)] + [123 × (-55)]
From Distributive property of Multiplication,
°•° a(b+c) = ab + ac
=> 123 × [ -45 + (-55)]
=> 123 × [ -45 - 55]
=> 123 × (-100)
=> -12300
•°• Required Result = -123000
b)
(-8) × 567 × (-125)
=> 8 × 125 × 567
(As per Associativity property,
a × b = b × a , i.e., change of order of multiplication doesn't affect the result)
For simplicity, take 125 = 25 × 5
=> 8 × (25×5) × 567
=> 25 × 8 × 5 × 567
(As per associativity property of multiplication)
=> 25 × 40 × 567
For simplicity, take 40 = 4×10
=> (25 × 4) × 10 × 567
=> 100 × 10 × 567
=> 567000
•°• Required Result = 567000
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°
¢#£€®$
:)
Hope it helps
Similar questions
Math,
7 months ago
English,
7 months ago
CBSE BOARD XII,
1 year ago
Geography,
1 year ago
Geography,
1 year ago