Physics, asked by ObnoxiousS, 5 days ago

Hiee ^^

A particle experiences constant acceleration for 20 seconds after starting from rest. It it travels a distance D1 in the first 10 seconds and distance D2 in next 10 seconds then :-

(a) D1 = D2
(b) D2 = 2D1
(c) D2 = 3D1
(d) D2 = 4D1

────────────
Answer with explanation! :) ​

Answers

Answered by Itzheartcracer
5

Given :-

A particle experiences constant acceleration for 20 seconds after starting from rest. It it travels a distance D1 in the first 10 seconds and distance D2 in next 10 seconds

To Find :-

Relation between distances

Solution :-

We know that

s = ut + 1/2at²

In case of D1

⇒ d1 = 0(t) + 1/2 × a × (10)²

⇒ d1 = 0 + 1/2 × a × 100

⇒ d1 = 0 + 50a

⇒ d1 = 50a

Now

⇒ v = u + at

⇒ v = 0 + 10(a)

⇒ v = 0 + 10a

⇒ v = 10a

Final velocity of D1 = Initial velocity of D2

In case of D2

Using the same formula

⇒ d2 = (10a)(10) + 1/2 × a × (10)²

⇒ d2 = 100a + 1/2 × a × 100

⇒ d2 = 100a + 50a

⇒ d2 = 150a

Now

d1 = 50a

d2 = 150a

On dividing both

d1/d2 = 50/150

d1/d2 = 1/3

3d1 = d2

d2 = 3d1 Or,

D2 = 3D1

Option C is correct

[tex][/tex]

Answered by xxRoyalgirlxx
3

Answer:

Let a be the constant acceleration of the particle. Thens=ut+

2

1

at

2

or s

1

=0+

2

1

×a×(10)

2

=50aand s

2

=[0+

2

1

a(20)

2

]−50a=150a

∴s

2

=3s

1

Alternatively:Let a be constant acceleration and

s=ut+

2

1

at

2

, then s

1

=0+

2

1

×a×100=50a

Velocity after 10 sec. is v=0+10a

So, s

2

=10a×10+

2

1

a×100=150a⇒s

2

=3s

1

Let a be constant acceleration, using s=ut+

2

1

at

2

so distance coreved in first 10 seconds s

1

=0+

2

1

×a×100=50a

Velocity after 10 sec. is v=0+10a

So, distance covered in next 10 seconds s

2

=10a×10+

2

1

a×100=150a⇒s

2

=3s

1

Similar questions