Social Sciences, asked by Anonymous, 11 months ago

HIEE!! HELP NEEDED

\frac{cos \: 45}{sec \: 30 \: + \: cosec \: 30 }

Answers

Answered by ShresthaTheMetalGuy
3

To Find:

The Value of:

 \frac{cos45°}{sec30° + cosec30°}

.

.

As we know that,

The values of:

 \cos(45°)  =  \frac{1}{ \sqrt{2} }

 \sec(30°)  =  \frac{1}{ \cos(30°) }  =  \frac{2}{ \sqrt{3} }

cosec(30°) =  \frac{1}{ \sin(30°) }  = 2

(FROM THE TRIGNOMETRIC TABLE)

.

.

NOW,

ON Substituting the values above into the given expression:

 \frac{cos45°}{sec30° + cosec30°}  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3}  }   + 2}

( \frac{1}{ \sqrt{2} }  )\div ( \frac{2 +2 \sqrt{3}  }{ \sqrt{3} } )

On rationalising the denominator

of (1/√2)

( \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} } ) \times ( \frac{ \sqrt{3} }{2 + 2 \sqrt{3} } )

 \frac{ \sqrt{6} }{4}   \times \frac{ {1} }{ \sqrt{3} + 1 }

On rationalising the denominator

of [1/(√3+1)]

 \frac{ \sqrt{6} }{4}  \times ( \frac{1(\sqrt{3} - 1 )}{( \sqrt{3}   +  1)( \sqrt{3} - 1)  } )

 \frac{ \sqrt{6} }{4}  \times  \frac{\sqrt{3}  - 1}{2}

 \frac{ \sqrt{18} -  \sqrt{6}  }{8}

 \frac{ \sqrt{3 \times 3 \times 2} -  \sqrt{6}  }{8}

 =  \frac{ 3\sqrt{2} -  \sqrt{6}  }{8}

Therefore;

Answer:

 \frac{cos45°}{sec30° + cosec30°}  =  \frac{ 3\sqrt{2} -  \sqrt{6}  }{8}

Answered by ITzBrainlyGuy
3

Question:

find the value of

 \dfrac{ \cos(45°) }{ \sec(30°)  +  \csc(30°) }

Used formulas:

cos45° = 1/√2

sec30° = 2/√3

cosec30° = 2

Answer:

 =  \dfrac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} } + 2 }  \\  \\  =  \dfrac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } } \\  \\  =  \dfrac{ \sqrt{3} }{(2 + 2 \sqrt{3}  ) \sqrt{2} }   \\  \\  =  \dfrac{ \sqrt{3} }{2 \sqrt{2} + 2 \sqrt{6}  }  \\  \\  =  \frac{ \sqrt{3} }{2 \sqrt{2} (1 +  \sqrt{3} )}

Used concepts:

→ trigonometric ratios

→ trigonometric ratios for standard angles

Similar questions