Math, asked by Bestylish, 1 year ago

hii a ques---: answer if u dare:------!!!!!!

only meant for genius :----'

Attachments:

Answers

Answered by rakeshmohata
9
Hope u like my process
=====================
Sorry if handwriting is bad
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you
Attachments:

rakeshmohata: no thanks... that was my honour to help you... Mera फर्ज़ था..
rakeshmohata: proud to help you
rakeshmohata: ok
rakeshmohata: Happy to hear that it helped you!
rakeshmohata: thnx for the brainliest one
Answered by Deepsbhargav
23

 =  >  \frac{ax}{cos \alpha }  +  \frac{by}{sin \alpha }  =  {a}^{2}  -  {b}^{2}  \:  \:  \: ...eq _{1} \\  \\  =  >  \frac{axsin \alpha }{ {cos}^{2} \alpha  }  -  \frac{bycos \alpha }{ {sin}^{2} \alpha  }  = 0 \\  \\  =  >  \frac{ {sin}^{3}  \alpha }{by}  =  \frac{ {cos}^{3}  \alpha }{ax}  \\  \\  =  >  {( \frac{ {sin }^{ 3 }  \alpha }{by}) }^{ \frac{2}{3} }  =  {( \frac{ {cos}^{3} \alpha  }{ax}) }^{ \frac{2}{3} }
_____________-____

we know that :-

  if  =  > \:  \: \frac{a}{b}  =  \frac{c}{d }  \\  \\ then \:  \:  \:  =  >  \frac{a}{b}  =  \frac{c}{d}  =  \frac{a + c}{b + d}
_____________________

Then

 =  >  \frac{ {sin}^{2} \alpha  }{ {(by)}^{ \frac{2}{3} } }  =  \frac{ {cos}^{2} \alpha  }{ {(ax)}^{ \frac{2}{3} } }  =  \frac{ {sin}^{2}  \alpha  +  {cos}^{2} \alpha  }{ {(by)}^{ \frac{2}{3} }  +  {(ax)}^{ \frac{2}{3} } }  \\  \\  =  >  \frac{ {sin}^{2} \alpha  }{ {(by)}^{ \frac{2}{3} } }  +  \frac{ {cos}^{2} \alpha  }{ {(ax)}^{ \frac{2}{3} } }  =  \frac{1}{ {(ax)}^{ \frac{2}{3} }  +  {(by)}^{ \frac{2}{3} } }  \\  \\  =  > sin \alpha  =  \frac{ {(by)}^{ \frac{1}{3} } }{ \sqrt{ {(ax)}^{ \frac{2}{3}  }  +  {(by)}^{ \frac{2}{3} } } }  \\  \\ and \\  \\  =  > cos \alpha  =  \frac{ {(ax)}^{ \frac{1}{3} } }{ \sqrt{ {(ax)}^{ \frac{2}{3} }  +  {(by)}^{ \frac{2}{3} } } }  \\  \\ putting \:  \: the\:  \: value \: \:  in \:  \: eq1 \\  \\  =  >  {(ax)}^{ \frac{2}{3} }  \sqrt{ {(ax)}^{ \frac{2}{3}  } +  {(by)}^{ \frac{2}{3} }  }   \: +  {(by)}^{ \frac{2}{3} }   \sqrt{ {(ax)}^{ \frac{2}{3} }  +  {(b)}^{ \frac{2}{3} } }  =  {a}^{2}  -  {b}^{2}  \\  \\  =  > ( \sqrt{ {(ax)}^{ \frac{2}{3} }  +  {(by)}^{ \frac{2}{3} } } ).( {(ax)}^{ \frac{2}{3} }  +  {(by)}^{ \frac{2}{3} } ) =  {a}^{2}  -  {b}^{2}  \\  \\  =  >  {(( {ax)}^{ \frac{2}{3}  }  +  {(by)}^{ \frac{2}{3} } )}^{ \frac{3}{2} }  =  {a}^{2}  -  {b}^{2}  \\  \\  =  >  {(ax)}^{ \frac{2}{3} }  +  {(by)}^{ \frac{2}{3} }  =  {( {a}^{2} -  {b}^{2} ) }^{ \frac{2}{3} }
____________________[PROVED]


Deepsbhargav: theku
Similar questions