Math, asked by rajneeshmanpreeet, 10 months ago

Hii anyone can solve it​

Attachments:

Answers

Answered by spiderman2019
8

Answer:

756

Step-by-step explanation:

a+b+c = 9

a²+b²+c² = 83

(a+b+c)² - 2(ab+bc+ca) = 83

81 - 2(ab+bc+ca) = 83

-2(ab+bc+ca) = 2

ab+bc+ca = -1

--------------------

a³+b³+c³ - 3abc

= (a + b + c)(a² + b² + c² - ab - bc - ca)

= (a + b + c) [ (a²+b²+c²) - (ab+bc+ca)]

= 9 * [83 - (-1)]

= 9 * 84

=  756

Answered by Anonymous
15

Question :

If a + b + c = 9 and a² + b² + c² = 83, find the value of a³ + b³ + c³ - 3abc.

Solution :

→ (a + b + c)² - 2(ab + bc + ca) = 83

→ (9)² - 2(ab + bc + ca) = 83

[As a + b + c = 9 (given)]

→ 81 - 2(ab + bc + ca) = 83

→ - 2(ab + bc + ca) = 83 - 81

→ - 2(ab + bc + ca) = 2

→ ab + bc + ca = - 1

_____________________________

Now...

→ a³ + b³ + c³ - 3abc = a³ + b³ + c³ - 3abc

→ (a + b + c) (a² + b² + c² - ab - bc - ca)

→ (a + b + c) [a ² + b² + c² - (ab + bc + ca)]

→ (9) [83 - (-1)]

→ 9 (83 + 1)

→ 9 (84)

756

____________________________

a³ + b³ + c³ - 3abc = 756

_________ [ ANSWER ]

____________________________

Similar questions