Hii anyone can solve it
Answers
Answer:
756
Step-by-step explanation:
a+b+c = 9
a²+b²+c² = 83
(a+b+c)² - 2(ab+bc+ca) = 83
81 - 2(ab+bc+ca) = 83
-2(ab+bc+ca) = 2
ab+bc+ca = -1
--------------------
a³+b³+c³ - 3abc
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c) [ (a²+b²+c²) - (ab+bc+ca)]
= 9 * [83 - (-1)]
= 9 * 84
= 756
Question :
If a + b + c = 9 and a² + b² + c² = 83, find the value of a³ + b³ + c³ - 3abc.
Solution :
→ (a + b + c)² - 2(ab + bc + ca) = 83
→ (9)² - 2(ab + bc + ca) = 83
[As a + b + c = 9 (given)]
→ 81 - 2(ab + bc + ca) = 83
→ - 2(ab + bc + ca) = 83 - 81
→ - 2(ab + bc + ca) = 2
→ ab + bc + ca = - 1
_____________________________
Now...
→ a³ + b³ + c³ - 3abc = a³ + b³ + c³ - 3abc
→ (a + b + c) (a² + b² + c² - ab - bc - ca)
→ (a + b + c) [a ² + b² + c² - (ab + bc + ca)]
→ (9) [83 - (-1)]
→ 9 (83 + 1)
→ 9 (84)
→ 756
____________________________
a³ + b³ + c³ - 3abc = 756
_________ [ ANSWER ]
____________________________