Math, asked by afreen786n, 1 year ago

Hii Brainlians


queston :- If x = 5 +2√6 then find the value of
√x+ 1/√x and √x - 1/√x


Please Give correct answer​

Answers

Answered by siddhartharao77
6

Step-by-step explanation:

Given: x = 5 + 2√6

⇒ 3 + 2 + 2√6

⇒ (√3)² + (√2)² + 2(√3)(√2)

⇒ (√3 + √2)²

So, x = (√3 + √2)²

Then, √x = (√3 + √2)

Now,

(1/√x) = (1/√3 + √2) * [(√3 - √2)/(√3 - √2)]

          = (√3 - √2)/(√3)² - (√2)²

          = (√3 - √2)

(i)

√x + (1/√x) = √3 + √2 + √3 - √2

                  = 2√3

(ii)

√x - (1/√x) = √3 + √2 - √3 + √2

                 = 2√2

Hope it helps!


afreen786n: thank you
siddhartharao77: Welcome
Answered by Anonymous
15

SOLUTION ☺️

Given: x= 5+26

1st case= x+1/x

 =  >  \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} }  \\  \\  =  >  \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} }  \times  \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }  = \frac{5 - 2 \sqrt{6} }{25 - 24}  = 5 - 2 \sqrt{6}  \\  \\  =  > now \\ ( \sqrt{x}  \times \frac{1}{ \sqrt{x} } ) {}^{2}  = x +  \frac{1}{x}  + 2 \times  \sqrt{x}  \times  \frac{1}{ \sqrt{x} }  = x +  \frac{1}{x}  + 2 \\  \\  =  >  \sqrt{x}  +   \frac{1}{ \sqrt{x} }  =  \sqrt{x +  \frac{1}{x} + 2 }  \\  \\  =  >  \sqrt{5 + 2}  \sqrt{6 + 5 - 2 \sqrt{6 + 2} }  \\  \\  =  >  \sqrt{5 + 5 + 2}  \\  \\  =  >  \sqrt{12}

2nd Case

= x-1/x

given > x = 5 + 2 \sqrt{6}  \\  \\  =  >  \frac{1}{x}  = 5 - 2 \sqrt{6} \:  \:  rationalise \\  \\  =  > now \: \\ ( \sqrt{x}  -  \frac{1}{ \sqrt{x} } ) {}^{2}  = x +  \frac{1}{x}  - 2 \times  \sqrt{x}  \times  \frac{1}{x}  = x +  \frac{1}{x}  - 2 \\  \\  =  >  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{x +  \frac{1}{x} - 2 }  \\  \\  =  >  \sqrt{5 + 2 \sqrt{6 + 5 - 2 \sqrt{6  - 2} } }  \\  \\  =  >  \sqrt{5 + 5 - 2}  \\  \\  =  >  \sqrt{10}

HOPE IT HELPS


xJAANIx: @jiju
xJAANIx: @inbox❗
Similar questions