hii.. can u answer this question..
sin theta + 2 cos theta =1 given
to prove 2sin theta -cos theta =2
cd058949:
Please reply
Answers
Answered by
1
As sin + 2cos = 1
By squaring
sin² + 4cos² + 4 *sin * cos =1
(1-cos²) + 4* (1- sin²) + 4* sin * cos = 1
1 - cos² + 4 - 4* sin² + 4* sin * cos = 1
By multiplying both sides by -1, we get
cos² - 4 + 4* sin² - 4 * sin * cos = 0
cos² + 4* sin² - 4* sin * cos = 4
(2 * sin - cos )² = (2)²
Square root both the side
Therefore 2sin - cos = 2
(proved)
Hope this helps you :)
Answered by
1
sin + 2 cos = 1
sin + cos + cos = 1
sin + cos = 1 - cos
Now squaring
( sin + cos)^2 = ( 1 - cos)^2
Sin^2 + cos^2 + 2 sin cos = 1 + cos^2 - 2cos
sin^2 + 2 sin cos = 1 - 2cos
Take sin^2 = 1 - cos^2
So 1 - cos^2 + 2 sin cos = 1 - 2 cos
- cos^2 + 2 sin cos = - 2cos
- cos^2 + 2 cos + 2 sin cos = 0
cos ( - cos + 2 + 2 sin ) = 0
cos = 0 or 2 sin - cos = -2
So if cos = 0
then angle = 90
which is true
hence 2 sin - cos = 2 sin 90 - cos 90 = 2
sin + cos + cos = 1
sin + cos = 1 - cos
Now squaring
( sin + cos)^2 = ( 1 - cos)^2
Sin^2 + cos^2 + 2 sin cos = 1 + cos^2 - 2cos
sin^2 + 2 sin cos = 1 - 2cos
Take sin^2 = 1 - cos^2
So 1 - cos^2 + 2 sin cos = 1 - 2 cos
- cos^2 + 2 sin cos = - 2cos
- cos^2 + 2 cos + 2 sin cos = 0
cos ( - cos + 2 + 2 sin ) = 0
cos = 0 or 2 sin - cos = -2
So if cos = 0
then angle = 90
which is true
hence 2 sin - cos = 2 sin 90 - cos 90 = 2
Similar questions