Math, asked by Anonymous, 10 months ago

hii friends please don't spam and give answer very fast​

Attachments:

Answers

Answered by anshi60
7

{\red{\huge{\underline{\mathbb{Given:-}}}}}

 \sin( \alpha )  =  \frac{ \sqrt{3} }{2}

 \cos( \beta  =  \frac{1}{ \sqrt{2} } )

and both alpha and beta are in the first quadrant .

{\red{\huge{\underline{\mathbb{Answer:-}}}}}

1) we know that

 \sin(2 \alpha )  = 2 \sin( \alpha ) \cos( \alpha )

 =  2 \times   \frac{ \sqrt{3} }{2}  \times  \frac{1}{ 2 }

 =  \frac{ \sqrt{3} }{2}

2) we know that

 \cos( 2 \alpha )  =  2\cos{}^{2} ( \alpha ) - 1

then ,

 \cos( \alpha )  = 2 \cos {}^{2} ( \frac{ \alpha }{2} )  - 1

 \cos( \frac{ \alpha }{2} )  =  \sqrt{ \frac{ \cos( \alpha  ) + 1 }{2} }

________________

sin alpha = √3/2

then , cos alpha = 1/2

______________

 \cos( \frac{ \alpha }{2} )  =  \sqrt{ \frac{ \frac{1}{2}  + 1}{2} }

 =  \sqrt{ \frac{3}{4} }  =  \frac{ \sqrt{3} }{2}

3)given

cosß = 1/√2

then ,

sinß = 1/√2

⇾tanß = sinß/cosß = 1

we know that

 \tan(2 \beta )  =  \frac{2 \tan( \beta ) }{1 -  \tan {}^{2} ( \beta ) }

it is not defined value , i.e denominator is 0

Answered by Anonymous
5

{\Blue {\huge{\underline{\mathbb{Given:-}}}}}

 \sin( \alpha )  =  \frac{ \sqrt{3} }{2}

and \:  \cos( \beta  )  =  \frac{1}{ \sqrt{2} }

\huge{\orange{\boxed{\boxed{\boxed{\pink{\underline{\underline{\mathfrak{\red{♡ĂnSwer♡}}}}}}}}}}

1)

 \sin( \alpha   )  =  \frac{ \sqrt{3} }{2}  \: then \:  \cos( \alpha )  =  \frac{1}{2}

we know that

 \sin(2 \alpha )  = 2 \sin( \alpha ) \cos( \alpha )

put the values

_________________

  \sin( 2\alpha )  = 2 \times  \frac{ \sqrt{3} }{2}  \times  \frac{1}{ 2}

 =  \frac{ \sqrt{3} }{2}

2) we know that

 \cos( 2 \alpha  )  = 2 \cos {}^{2} ( \alpha )  - 1

then \:  \cos( \alpha )  = 2 \cos {}^{2} ( \frac{ \alpha }{2} )  - 1

therefore,

 \cos( \frac{ \alpha }{2} )  =  \sqrt{ \frac{ \cos(  \alpha )  + }{2} }

put \: the \cos( \alpha )  =  \frac{1}{ 2}

 \cos( \frac{ \alpha }{2} )  =  \sqrt{ \frac{ \frac{1}{2} + 1 }{2} }

 =  \frac{ \sqrt{3} }{2}

3) we know that

 \tan( 2\beta )  =  \frac{ \tan( \beta ) }{1 -  \tan {}^{2} ( \beta ) }

 \cos( \beta )  =  \frac{1}{ \sqrt{2} } \:  then \:  \sin( \beta )  =  \frac{1}{ \sqrt{2} }

therefore \:  \tan( \beta )  = 1

put the tanß value in the given formula

u get not defined term

{\red{\huge{\underline{\mathbb{Follow:-}}}}}

Similar questions