Math, asked by Vmusale, 11 months ago

hii friends,
plz solve it.....​

Attachments:

Answers

Answered by HariyaniDev
1

Step-by-step explanation:

We need to use the cos rule of 2θ which is:

 \cos(2θ)  =  { \cos}^{2}θ -  \sin^{2} θ

Attachments:
Answered by ShivajiMaharaj45
1

Step-by-step explanation:

\sf In \triangle ABC

\\

\sf \angle C = \frac {\pi}{2}

\\

\sf Hence\:by\:pythagorus \:theorem

\\

\sf {a}^{2} + {b}^{2} = {c}^{2}

\\

\sf We\: have \: to \: prove

\\

\sf sin ( A - B ) = \frac { {a}^{2} - {b}^{2}}{{c}^{2}}

\\

\sf From \: sine \:rule \: we \:know \:that

\\

\sf \frac {a}{sinA } = \frac {b}{sinB } = \frac {c}{sinC} = k

\\

\sf a = k sinA

\sf b = k sinB

\sf c = k sinC

\\

\sf R.H.S. = \frac { {a}^{2} - {b}^{2}}{{c}^{2}}

\\

\sf = \frac { {k}^2 {sin}^{2}A  - {k}^{2}{sin}^{2}B}{{k}^{2}{sin}^{2}C}

\\

\sf \frac { ( sinA - sinB )(sinA + sinB)}{sin (A+B).sin (A+B)}

\\

\sf \frac {2sin(\frac {A + B}{2})cos (\frac{A-B}{2}).2sin(\frac {A - B}{2})cos (\frac {A+B}{2})}{sin (A+B)sin (A+B)}

\\

\sf \frac {sin ( A + B) sin ( A - B ) }{sin (A+ B )}

\\

\sf sin ( A - B )

THANKS!!!

Similar questions