hii frnds.....
prove it 4 me.....
Answers
Answered by
1
☺☺☺
Q. Prove that cosec a ( 1 + cos a ) ( cosec a - cot a ) = 1.
Solution: cosec a ( 1 + cos a ) ( cosec a - cot a ) = 1. --------- equation 1
We know that cosec a = 1 / sin a and cot a = cos a / sin a.By putting the value of ( cosec a ) and ( cot a ) in equation 1.
( 1 / sin a ) ( 1 + cos a ) { ( 1 / sin a ) - ( cos a / sin a ) } = 1
1 - cos a
( 1 / sin a ) ( 1 + cos a ) { ------------------- } = 1
sin a
( 1 / sin² a ) ( 1 + cos a ) ( 1 - cos a ) = 1
( 1 / sin² a ) ( 1 - cos² a ) = 1. ----------- equation 2
We know that ( 1 - cos² a ) = sin² a,
By putting the value of ( 1 - cos² a ) = sin² a in equation 2,
( 1 / sin² a ) x sin² a = 1
1 = 1.
Hence, proved.
Note : Instead of alpha , ' a ' is being used.
☺☺☺
Q. Prove that cosec a ( 1 + cos a ) ( cosec a - cot a ) = 1.
Solution: cosec a ( 1 + cos a ) ( cosec a - cot a ) = 1. --------- equation 1
We know that cosec a = 1 / sin a and cot a = cos a / sin a.By putting the value of ( cosec a ) and ( cot a ) in equation 1.
( 1 / sin a ) ( 1 + cos a ) { ( 1 / sin a ) - ( cos a / sin a ) } = 1
1 - cos a
( 1 / sin a ) ( 1 + cos a ) { ------------------- } = 1
sin a
( 1 / sin² a ) ( 1 + cos a ) ( 1 - cos a ) = 1
( 1 / sin² a ) ( 1 - cos² a ) = 1. ----------- equation 2
We know that ( 1 - cos² a ) = sin² a,
By putting the value of ( 1 - cos² a ) = sin² a in equation 2,
( 1 / sin² a ) x sin² a = 1
1 = 1.
Hence, proved.
Note : Instead of alpha , ' a ' is being used.
☺☺☺
Anonymous:
Please mark as brainliest
Answered by
4
I am taking a instead of alpha
lhs=cosec a(1+ cos a) (cosec a-cot a)
(cosec a+cos a* cosec a) (cosec a -cot a)
(cosec a+cos a/sin a) (cosec a-cot a)
(cosec a+ cot a) (cosec a- cot a)
cosec2 a-cot2 a
1=rhs
lhs=cosec a(1+ cos a) (cosec a-cot a)
(cosec a+cos a* cosec a) (cosec a -cot a)
(cosec a+cos a/sin a) (cosec a-cot a)
(cosec a+ cot a) (cosec a- cot a)
cosec2 a-cot2 a
1=rhs
Similar questions