Math, asked by iAmPerfect, 1 year ago


hii guys I am new in brainly ....

please follow me...........


If α and β are the roots of the equation x2 + 2x – 2 = 0, then what is the equation whose roots are α5 and β5?

Answers

Answered by AJAYMAHICH
4
x^2 + 2x - 2 = 0

if a and b root of any equation then :-

x^2 - ( a+b)x + ab = 0

then

a+b = -2
ab = -2



and now we find the value of

a^5 + b^5 = ??

then


( a+ b )^5 = a^5 + 5a^4.b + 10a^3. b^2 + 10a^2.b^3 + 5a.b^4 + b^5


(a+b)^5 - 5a^4.b - 5a.b^4 - 10a^3.b^2 - 10 a^2.b^3 = a^5 + b^5

(-2)^5 - 5(-2)(a^3 + b^3) - 10(-2)^2 . ( -2) = a^5 + b^5


-32 + 10 {(a+b)^3 - 3ab} + 80 = a^5 + b^5

-32 + 10 { (-2)^3 - 3(-2) } + 80 = a^5 + b^5

-32 + 10{ -8 + 6} + 80 = a^5 + b^5

48 -20 = a^5 + b^5

28 = a^5 + b^5




1311421: hello
1311421: attitude girl here
AJAYMAHICH: toh
1311421: meet u in inbox
1311421: aaaaaareeeee
1311421: mey
1311421: replay yrrr
Answered by chopraneetu
3

 {x}^{2} + 2x - 2 = 0 \\  \alpha  +  \beta  =  -  \frac{b}{a}   =  -  \frac{2}{1}  =  - 2 \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 2}{1}  =  - 2 \\{ ( \alpha   + \beta )}^{2} =  { \alpha}^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  \\  ( { - 2})^{2}  = { \alpha}^{2}  +  { \beta }^{2} + 2( - 2) \\ { \alpha}^{2}  +  { \beta }^{2} = 4 + 4 = 8...............(1) \\ now  \: on\: cubing \: we \: get \\  ({ \alpha   + \beta })^{3}  =  { \alpha}^{3}  +  { \beta }^{3} + 3 \alpha  \beta  (\alpha  +  \beta ) \\  {( - 2)}^{3}  =  { \alpha}^{3}  +  { \beta }^{3}  + 3( - 2)( - 2) \\  - 8 =  { \alpha}^{3}  +  { \beta }^{3}  + 12 \\  { \alpha}^{3}  +  { \beta }^{3}  =  - 8 -12 =  - 20.......(2) \\ multiplying \: (1) \: and \: (2) \\  ({ \alpha}^{2}  +  { \beta }^{2} ) ({ \alpha}^{3}  +  { \beta }^{3} ) =  { \alpha}^{5}  + { \alpha}^{2}    { \beta }^{3}  +  { \beta }^{2}  { \alpha}^{3}  +  { \beta }^{5}  \\ (8)( - 20) = {\alpha}^{5} + { \beta }^{5}  +  { \alpha}^{2}   { \beta }^{2} ( \alpha  +  \beta ) \\  - 160 = {\alpha}^{5} + { \beta }^{5}  +  {( - 2)}^{2} ( - 2) \\  - 160 = {\alpha}^{5} + { \beta }^{5}  - 8 \\ {\alpha}^{5} + { \beta }^{5}  =  - 160 + 8 =  - 152..........(3) \\ {\alpha}^{5} { \beta }^{5}  =  {( - 2)}^{5}  =  - 32 \\ the \: required \: equation \: whose \: roots \: are \:  { \alpha }^{5} and \:  { \beta }^{5} is \\  {x}^{2}  - ( - 152)x  + ( - 32) = 0 \\  {x}^{2}  + 152x - 32 = 0

iAmPerfect: tysm
Similar questions