hii guys I am new in brainly ....
please follow me...........
If α and β are the roots of the equation x2 + 2x – 2 = 0, then what is the equation whose roots are α5 and β5?
Answers
Answered by
4
x^2 + 2x - 2 = 0
if a and b root of any equation then :-
x^2 - ( a+b)x + ab = 0
then
a+b = -2
ab = -2
and now we find the value of
a^5 + b^5 = ??
then
( a+ b )^5 = a^5 + 5a^4.b + 10a^3. b^2 + 10a^2.b^3 + 5a.b^4 + b^5
(a+b)^5 - 5a^4.b - 5a.b^4 - 10a^3.b^2 - 10 a^2.b^3 = a^5 + b^5
(-2)^5 - 5(-2)(a^3 + b^3) - 10(-2)^2 . ( -2) = a^5 + b^5
-32 + 10 {(a+b)^3 - 3ab} + 80 = a^5 + b^5
-32 + 10 { (-2)^3 - 3(-2) } + 80 = a^5 + b^5
-32 + 10{ -8 + 6} + 80 = a^5 + b^5
48 -20 = a^5 + b^5
28 = a^5 + b^5
if a and b root of any equation then :-
x^2 - ( a+b)x + ab = 0
then
a+b = -2
ab = -2
and now we find the value of
a^5 + b^5 = ??
then
( a+ b )^5 = a^5 + 5a^4.b + 10a^3. b^2 + 10a^2.b^3 + 5a.b^4 + b^5
(a+b)^5 - 5a^4.b - 5a.b^4 - 10a^3.b^2 - 10 a^2.b^3 = a^5 + b^5
(-2)^5 - 5(-2)(a^3 + b^3) - 10(-2)^2 . ( -2) = a^5 + b^5
-32 + 10 {(a+b)^3 - 3ab} + 80 = a^5 + b^5
-32 + 10 { (-2)^3 - 3(-2) } + 80 = a^5 + b^5
-32 + 10{ -8 + 6} + 80 = a^5 + b^5
48 -20 = a^5 + b^5
28 = a^5 + b^5
1311421:
hello
Answered by
3
Similar questions