Math, asked by yashika076, 1 year ago

hii guys
please show this sum...​

Attachments:

Answers

Answered by HappiestWriter012
22

y = log( \sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } } )

Differentiating with respect to x,

 \frac{dy}{dx} =   \frac{d}{dx}( log( \sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } } ) )

Let,

b = \sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } }

So,

 \frac{dy}{dx}  =  \frac{d}{dx} (logb) \\  \\  \frac{ dy}{dx}  =  \frac{1}{b}  \times  \frac{ db}{dx}

Now,

 \frac{db}{dx} =  \frac{d}{dx}( \sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } })

Let

c = 2x +  \sqrt{4 {x}^{2} +  {a}^{2}  }

 \frac{db}{dx}  =   \frac{d}{dx} \sqrt{c}   =  \frac{1}{2 \sqrt{c} }  \times  \frac{dc}{dx}

Now,

 \frac{dc}{dx}  =  \frac{d}{dx} (2x +  \sqrt{4 {x}^{2} +  {a}^{2}  }) \\  \\  \frac{dc}{dx}  = 2 +  \frac{8x}{2 \sqrt{ 4{x}^{2} +  {a}^{2}  } }

So,

  \frac{ dy}{dx}  =  \frac{1}{b}  \times  \frac{ db}{dx}  \\  \\ \frac{ dy}{dx} =  \frac{1}{\sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } } } \times  \frac{1}{2 \sqrt{c} }  \times  \frac{dc}{dx}  \\  \\ \frac{ dy}{dx} =  \frac{1}{\sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } } } \times  \frac{1}{2 \sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  }} }  \times  \frac{dc}{dx} \\ \\\frac{ dy}{dx} =  \frac{1}{\sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  } } } \times  \frac{1}{2 \sqrt{2x +  \sqrt{4 {x}^{2} +  {a}^{2}  }} }  \times    ( 2 +  \frac{8x}{2 \sqrt{ 4{x}^{2} +  {a}^{2}  } } )

 \\\frac{ dy}{dx} =  \frac{1}{2(2x +  \sqrt{4 {x}^{2} +  {a}^{2}  )} }  \times    ( 2 +  \frac{8x}{2 \sqrt{ 4{x}^{2} +  {a}^{2}  } } ) \\  \\\frac{ dy}{dx} =  \frac{1}{2(2x +  \sqrt{4 {x}^{2} +  {a}^{2}  )} }  \times    (    \frac{2 (2 \sqrt{ 4{x}^{2} +  {a}^{2}  }) + 8x}{2 \sqrt{ 4{x}^{2} +  {a}^{2}  } } ) \\   \\  \\\frac{ dy}{dx} =  \frac{1}{2(2x +  \sqrt{4 {x}^{2} +  {a}^{2}  )} }  \times    (    \frac{4(\sqrt{ 4{x}^{2} +  {a}^{2}  }) + 2x}{2 \sqrt{ 4{x}^{2} +  {a}^{2}  } } ) \\   \\ \frac{ dy}{dx} =  \frac{1}{2(2x +  \sqrt{4 {x}^{2} +  {a}^{2}  )} }  \times    (    \frac{4(\sqrt{ 4{x}^{2} +  {a}^{2}  }+ 2x)}{2 \sqrt{ 4{x}^{2} +  {a}^{2}  } } ) \\   \\  \\  \frac{dy}{dx}  =  \frac{1}{ \sqrt{4 {x}^{2}  +  {a}^{2} } }


Anonymous: Cool
Anonymous: Best Answer.
Answered by MonsieurBrainly
19

Find:

\dfrac{dy}{dx}\left(log \left\{\sqrt{2x+\sqrt{4x^{2}+a^{2}}}\right\}\right)\\

Solution:

\dfrac{dy}{dx}(log \{\sqrt{2x+\sqrt{4x^{2}+a^{2}}}\})\\\\= \dfrac{1}{ \sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{dy}{dx} (\sqrt{2x+\sqrt{4x^{2}+a^{2}}})\\\\= \dfrac{1}{ \sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{1}{2\sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{dy}{dx}(2x+\sqrt{4x^{2}+a^{2}}) \\\\= \dfrac{1}{ \sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{1}{2\sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times 2 + \dfrac{1}{2\sqrt{4x^{2}+a^{2}}} \times \dfrac{dy}{dx}(4x^{2}+a^{2})

\\\\= \dfrac{1}{ \sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{1}{2\sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times 2 + \dfrac{1}{2\sqrt{4x^{2}+a^{2}}} \times 4(2x^{(2-1)})+0\\\\= \dfrac{1}{ \sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{1}{2\sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times 2 + \dfrac{1}{2\sqrt{4x^{2}+a^{2}}} \times 4(2x)\\\\= \dfrac{1}{ \sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times \dfrac{1}{2\sqrt{2x+\sqrt{4x^{2}+a^{2}}}} \times 2 + \dfrac{1}{2\sqrt{4x^{2}+a^{2}}} \times 8x

\\\\= \dfrac{1}{2} \times \dfrac{1}{ 2x+\sqrt{4x^{2}+a^{2}}}  \times 2 + \dfrac{8x}{2\sqrt{4x^{2}+a^{2}}} \\\\= \dfrac{1}{2} \times \dfrac{1}{ 2x+\sqrt{4x^{2}+a^{2}}}  \times  \dfrac{4\sqrt{4x^{2}+a^{2}} + 8x}{2\sqrt{4x^{2}+a^{2}}}\\\\= \dfrac{1}{2} \times \dfrac{1}{ 2x+\sqrt{4x^{2}+a^{2}}}  \times  \dfrac{4(\sqrt{4x^{2}+a^{2}} + 2x)}{2\sqrt{4x^{2}+a^{2}}}\\\\= \dfrac{1}{ 2x+\sqrt{4x^{2}+a^{2}}}  \times  \dfrac{\sqrt{4x^{2}+a^{2}} + 2x}{\sqrt{4x^{2}+a^{2}}}\\\\= \dfrac{1}{\sqrt{4x^{2}+a^{2}}}

Formulas Used:

1. \: \dfrac{dy}{dx} \: logx = \dfrac{1}{x}\\\\2. \: \dfrac{dy}{dx} \: \sqrt{x} = \dfrac{1}{2\sqrt{x}}\\\\3. \: \dfrac{dy}{dx} \: x^{n} = n.x^{(n-1)}\\\\4. \: \dfrac{dy}{dx} \: k = 0\\\\


Anonymous: Splendid
Anonymous: Wonderful
Similar questions