Hii guys .....
Q. The difference between C.I and S.I. on a certain sum at 5% for 2years is rs 1. 50.
Find the sum.
Plz.... Solve this ques. ... With solution.
Answers
Answered by
4
Given, Time n = 2 years, R = 5%.
(i)
We know that CI = P[(1 + r/100)^n - 1]
⇒ P[(1 + 5/100)^2 - 1]
⇒ P[(21/20)^2 - 1]
⇒ P[441 - 400/400]
⇒ 41P/400
(ii)
We know that SI = PTR/100
⇒ P * 2 * 5/100
⇒ 10P/100
⇒ P/10.
Given that difference between CI and SI is 1.50.
⇒ (41P/400) - (P/10) = 1.50
⇒ 41P - 40P = 600
⇒ P = 600.
Therefore, the sum = 600.
Hope it helps!
Answered by
0
HEY DEAR ... ✌️
_________________________
_________________________
=) Given , Time (n) = 2 years , Rate (R) = 5%.
(i) We know that CI = P[(1 + r/100)^n - 1]
⇒ P[(1 + 5/100)^2 - 1]
⇒ P[(21/20)^2 - 1]
⇒ P[441 - 400/400]
⇒ 41P/400
(ii) We know that SI = PTR/100
⇒ P * 2 * 5/100
⇒ 10P/100
⇒ P/10.
Now , Given that difference between CI and SI is 1.50.
⇒ (41P/400) - (P/10) = 1.50
⇒ 41P - 40P = 600
⇒ P = 600.
Therefore, the sum = 600
__________________________
__________________________
HOPE , IT HELPS ... ✌️
_________________________
_________________________
=) Given , Time (n) = 2 years , Rate (R) = 5%.
(i) We know that CI = P[(1 + r/100)^n - 1]
⇒ P[(1 + 5/100)^2 - 1]
⇒ P[(21/20)^2 - 1]
⇒ P[441 - 400/400]
⇒ 41P/400
(ii) We know that SI = PTR/100
⇒ P * 2 * 5/100
⇒ 10P/100
⇒ P/10.
Now , Given that difference between CI and SI is 1.50.
⇒ (41P/400) - (P/10) = 1.50
⇒ 41P - 40P = 600
⇒ P = 600.
Therefore, the sum = 600
__________________________
__________________________
HOPE , IT HELPS ... ✌️
Similar questions