Math, asked by Dreamboi, 11 months ago

hii guys

Solve it

don't spam​

Attachments:

Answers

Answered by umiko28
5

{\large{\overbrace{\underbrace{\purple{your  \: answer:1) 6 + 3 \sqrt{2} + 2 \sqrt{3} +  \sqrt{6} \: 2)0}}}}}

 \huge\red{ (3 +  \sqrt{3} )(2 +  \sqrt{2} )} \\  \\    \bf\purple{ \leadsto:3 \times 2 + 3 \times  \sqrt{2} +  \sqrt{3} \times 2 +  \sqrt{3} \times  \sqrt{2}     } \\  \\   \bf\boxed{{ \leadsto: 6 + 3 \sqrt{2} + 2 \sqrt{3} +  \sqrt{6}}   } \\  \\ \huge\pink{ (3 +  \sqrt{3} )(3 -  \sqrt{3} ) } \\  \\ \bf\blue{ \leadsto:3 \times 3 - 3 \times  \sqrt{3} + 3 \times  \sqrt{3}  -  \sqrt{3} \times  \sqrt{3}    } \\  \\ \bf\blue{ \leadsto:9    \cancel{ - 3 \sqrt{3}}   \cancel{+ 3 \sqrt{3}} -  \sqrt{3}  \times  \sqrt{3}   } \\  \\ \bf\blue{ \leadsto:  \cancel{ + 9 } \cancel{- 9}} \\  \\ { \boxed{\blue{{ \leadsto: 0}}}} \\  \\

\large\boxed{ \fcolorbox{pink}{red}{hope \: it \: help \: you}}

Answered by Anonymous
1

Aɴꜱᴡᴇʀ

 \huge \sf{}1)6 + 3 \sqrt{2 }  + 2 \sqrt{3}  + 6 \\  \\ \huge \sf{}2)6

_________________

Gɪᴠᴇɴ

( \sf{}3 +  \sqrt{3}  \: )(2 +  \sqrt{2} ) \\   \sf (3 +  \sqrt{3} )(3 -  \sqrt{3} )

_________________

Tᴏ ꜰɪɴᴅ

Their simplified form

_________________

Sᴛᴇᴘꜱ

 \sf{}first \: lets \: find \: the \: answer \: for \: the \: first \: one \\  \\ \sf{} = (3 +  \sqrt{3} )(2 +  \sqrt{2} ) \\  \\  \sf{} = 3 (2 +  \sqrt{2} ) +  \sqrt{3} (2 +  \sqrt{2} ) \\  \\  \sf{} \bf = 6 + 3 \sqrt{2}  + 2 \sqrt{3}  +  \sqrt{6}

 \sf{}now \: for \: the \: second \: one \: if \: we \: observe \: carefully \: we \: see \: that \:  \\  \\ \sf{}we \:  \: can \: use \: the \: identity = (x + y)(x - y) =  {x }^{2}  -  {y}^{2}  \\  \\  \sf{}so \: substituting \:t he \: x = 3 \: and \: y =  \sqrt{3}  \\  \\  \sf{} \: we \: get \: ( {3}^{2}  -   { (\sqrt{3} )}^{2} ) \\  \\  \sf \bf{}9 - 3 = 6

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Similar questions