Math, asked by Anonymous, 4 days ago

Hii guys solve the above attachment​

Attachments:

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

 \displaystyle \: f(x) =  \int \dfrac{ \sqrt{x} }{ \left( 1 + x\right)^{2} } \:  dx

 \bf{Put \:  \:  \: x =  \tan^{2} ( \theta) } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)

 \bf{ \mapsto\:  \:  \: dx = 2 \tan( \theta) \cdot \sec^{2} ( \theta) \: d \theta  }

So,

 \displaystyle  \implies\: f(x) =  \int \dfrac{  \tan( \theta)  }{ \left( 1 +  \tan^{2} ( \theta) \right)^{2} } \cdot \: 2 \tan( \theta) \cdot \sec^{2} ( \theta)  \: d \theta  \\

 \displaystyle  \implies\: f(x) = 2 \int \dfrac{  \tan( \theta)  }{   \sec^{4} ( \theta)  } \cdot  \tan( \theta) \cdot \sec^{2} ( \theta)  \: d \theta  \\

 \displaystyle  \implies\: f(x) = 2 \int \dfrac{  \tan^{2} ( \theta)  }{   \sec^{2} ( \theta)  }   \: d \theta  \\

 \displaystyle  \implies\: f(x) = 2 \int  \sin^{2} ( \theta)   \: d \theta  \\

 \displaystyle  \implies\: f(x) =  \int2  \sin^{2} ( \theta)   \: d \theta  \\

 \displaystyle  \implies\: f(x) =  \int(1 - \cos( 2\theta) )  \: d \theta  \\

 \displaystyle  \implies\: f(x) =  \int \: d \theta-  \int\cos( 2\theta)  \: d \theta  \\

 \displaystyle  \implies\: f(x) =  \theta-   \dfrac{\cos( 2\theta)}{2}   + c \\

From (1), we get,

 \displaystyle  \implies\: f(x) =   \tan^{ - 1}  \left( \sqrt{x}  \right) -   \dfrac{1}{2} \cdot \dfrac{1 - x}{1 + x}    + c \\

Now,

 \displaystyle  \implies\: f(3) =   \tan^{ - 1}  \left( \sqrt{3}  \right) -   \dfrac{1}{2} \cdot \dfrac{1 - 3}{1 + 3}    + c \\

 \displaystyle  \implies\: f(3) =    \dfrac{\pi}{3}   +  \dfrac{1 }{4}    + c \\

 \displaystyle  \implies\: f(1) =   \tan^{ - 1}  \left( \sqrt{1}  \right) -   \dfrac{1}{2} \cdot \dfrac{1 - 1}{1 + x}    + c \\

 \displaystyle  \implies\: f(1) =  \dfrac{\pi}{4}      + c \\

So,

 \displaystyle  \implies\: f(3)  - f(1)=    \dfrac{\pi}{3}   +  \dfrac{1 }{4}      -  \dfrac{\pi}{4}  \\

Answered by talpadadilip417
3

Step-by-step explanation:

 \\  \tt\int \frac{\sqrt{x}}{(1+x)^{2}} d x(x>0)

 \\  \\  \text{Put \( \tt x=\tan ^{2} \theta \qquad \Rightarrow 2 x  \:  \: d x=2 \tan \theta \sec ^{2} \theta  \:  \: d \theta \)}

 \\ \[ \begin{array}{l} \displaystyle \tt I=\int \frac{2 \tan ^{2} \theta \cdot \sec ^{2} \theta}{\sec ^{4} \theta} d \theta=\int 2 \sin ^{2} \theta d \theta \\ \\  \\  \\ \displaystyle \tt \quad=\theta-\frac{\sin 2 \theta}{2}+C \\  \\  \\  \\ \displaystyle \tt\Rightarrow f(x)=\theta-\frac{1}{2} \times \frac{2 \tan \theta}{1+\tan ^{2} \theta}+C \\ \\  \\  \\ \displaystyle \tt f(x)=\theta-\frac{\tan \theta}{1+\tan ^{2} \theta}+C=\tan ^{-1} \sqrt{x}-\frac{\sqrt{x}}{1+x}+C \end{array} \]

 \\  \\  \[  \begin{aligned} \tt\text { Now } f(3)-f(1) &=\tan ^{-1}(\sqrt{3})-\frac{\sqrt{3}}{1+3}-\tan ^{-1}(1)+\frac{1}{2} \\ \\  \\  \\  &=\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4} \end{aligned} \]

Similar questions