Math, asked by apandey05460, 4 months ago

hii...I need it...10 standard... whoever will answer it right... I'll mark it brainliest for sure​

Attachments:

Answers

Answered by devan7471
1

please follow me and mark as brainliest

Let a and d be the first term and the common difference of the given AP respectively. Then,

a

19

=52⇒a+18d=52 ...(1)

a

38

=148⇒a+37d=148 ...(2)

On subtracting (1) from (2), we get

19d=96⇒d=

19

96

Putting d=

19

96

in (1), we get

a=52−18×

19

96

=

19

−740

Now, S

56

=

2

56

[2a+(56−1)d]

∴S

56

=28[

19

3800

]=5600

Answered by cynddiab
0

Given terms are in AP

and  A(19th) + A(38th) = 56

In AP

A(n th term) = a + (n-1)d

        A(19th)= a+(19-1)d = a + 18d........(1)

        A(38th)= a+(38-1)d = a + 37d......(2)

       

Adding (1) and (2)

                A(19th) + A(38th) = 56 = a + 18d + a + 37d

                                      2a+ 55d = 56.......................(3)

                       

Now sum of n terms in AP = S(nth) = \frac{n}{2} [2a + (n-1)d]

                                     S(56 th) =    28[ 2a +(56-1)d]

                                                  =  28[ 2a + 55d] = 28(56).....from (3)

                                                  = 1568

The sum of the first 56 terms is 1568

Mark as brainliest if it helped ^-^

 

Similar questions