Math, asked by fgbdfhh, 1 year ago

hii


if x = 2 + √3


find x² + 1/x² and x³ + 1/x³


plzz, it is branliest question...

Answers

Answered by BrainlyQueen01
63

Hi there !


______________________


Given :


x = 2 + √3


To Find :



(i) x² + 1 / x²


(ii) x³ + 1 / x³


________________



x = 2 + √3


1 / x = 1 / 2 + √3


1 / x = 1 / 2 + √3 × 2 - √3 / 2 - √3


1 / x = 2 - √3 / (2)² - (√3)²


1 / x = 2 - √3 / 4 - 3


1 / x = 2 - √3


Now,


x + 1 / x = 2 + √3 + 2 - √3


x + 1 / x = 2 + 2


x + 1 / x = 4  


_____________________


Question I :


x + 1/x = 4


On squaring both sides ..


( x + 1/x )² = (4)²


x² + 1 / x² + 2 = 16


x² + 1 / x² = 16 - 2


x² + 1 / x² = 14  [Ans]


____________________


Question II :


x + 1 / x = 4


On cubing both sides ..


( x + 1/x )³ = (4)³


x³ + 1/x³ + 3 ( x + 1/x) = 64


x³ + 1/x³ + 3 (4) = 64


x³ + 1/x³ + 12  = 64


x³ + 1/x³ = 64 - 12


x³ + 1/x³ = 52  [Ans]


___________________


Thanks for the question !

Attachments:

janu4878: Sorry
janu4878: I won't do this again
janu4878: Hmm ok
janu4878: Sorry
janu4878: Please please please please please please p
janu4878: Ok
Prakhar2908: Gr8 Answer !
Answered by Anonymous
47
Heya!!

If x = 2 + √3

=) 1/x = 1/(2+√3) * (2-√3)/2-√3

= 2-√3 / (2^2 - √3^2)

= 2-√3

Since x^2 + 1/x^2

= (x + 1/x)^2 - 2*x*1/x

= (x +1/x)^2 - 2

= (2 + √3 + 2 - √3) ^2 - 2

= 4^2 - 2

= 16-2

= 14

2) x^3 + 1/x^3

= (2 + √3) ^3 + (2-√3)^2

= 8 + 3√3 + 12√3 + 18 + 8 - 3√3 - 12√3 + 18

= 52

Hope it helps uh!!

Anonymous: plz no more comments here - -
faltuboy: heyy dont chat here
Similar questions