Math, asked by gf875edgh, 1 year ago

Hii


if x = 2 + √3


find x² + 1/x² and x³ + 1/x³


plzz, it is branliest question...

Answers

Answered by BrainlyQueen01
147

Hi there !

____________________________________________


Given :


x = 2 + √3



To Find :


(i) x² + 1 / x²


(ii) x³ + 1 / x³


________________


x = 2 + √3


1 / x = 1 / 2 + √3


1 / x = 1 / 2 + √3 × 2 - √3 / 2 - √3


1 / x = 2 - √3 / (2)² - (√3)²


1 / x = 2 - √3 / 4 - 3


1 / x = 2 - √3


Now,


x + 1 / x = 2 + √3 + 2 - √3


x + 1 / x = 2 + 2


x + 1 / x = 4  

_____________________


Question I :


x + 1/x = 4


On squaring both sides ..


( x + 1/x )² = (4)²


x² + 1 / x² + 2 = 16


x² + 1 / x² = 16 - 2


x² + 1 / x² = 14  [Ans]

____________________


Question II :


x + 1 / x = 4


On cubing both sides ..


( x + 1/x )³ = (4)³


x³ + 1/x³ + 3 ( x + 1/x) = 64


x³ + 1/x³ + 3 (4) = 64


x³ + 1/x³ + 12  = 64


x³ + 1/x³ = 64 - 12


x³ + 1/x³ = 52  [Ans]

___________________


Thanks for the question !


☺️☺️


undertalker: great you is best
undertalker: means
undertalker: lol
mukul6559: Can I help you my girl friend
Anonymous: easy question
BrainlyVirat: Great answer Shreya ! :)
mukul6559: I hate you
Answered by SmãrtyMohït
93
Here is your solution

\bold{\purple{\boxed{\boxed{\huge\underline{Given:-}}}}}

x = 2 + √3

\huge\boxed{\red{\bold{Now}}}

 \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ now \\ x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ x + \frac{1}{x} = 4 \\\\ now \: Q.no \: (1) \\ \\ x + \frac{1}{x} = 4 \\ both \: side \: squaring \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14 \\ \\ Q.no \: (2) \\ \\ x + \frac{1}{x} = 4 \\ \\ \: on \: cubic \: both \: side. \\( x + \frac{1}{x} ) {}^{3} = 4 {}^{3} \\ \\ x {}^{3} + \frac{1}{ x{}^{3} } + 3(x + \frac{1}{x} ) = 64 \\ x {}^{3} + \frac{1}{x {}^{3} } + 3(4) = 64 \\ x {}^{3} + \frac{1}{x {}^{3} } = 64 - 12 \\ \\ x{}^{3} + \frac{1}{x {}^{3} } = 64 - 12 \\ x {}^{3} + \frac{1}{x {}^{3} } = 52

\boxed{\red{\bold{Hope\: it\: helps\: you }}}

mukul6559: kutta
mukul6559: Can I help you, friend
BrainlyVirat: Great one !
BrainlyVirat: ^_^
naman5068: hii
adithyashasan007: Nice answer lol
adithyashasan007: My pleasure.. :)
Similar questions