hii ....mates
.
➖➖➖➖➖.➖➖➖⬇️
Ques:- If sec theta + tan theta = p, Prove that sin theta=
Spammers will be reported
Answers
Answered by
4
.................(1)
........................(2)
Dividing 1 and 2
Thus
Hence proved
Hope it helps you :-)
_________________________________________________________________________
Anonymous:
welcome
Answered by
4
Heya !!
Ur answer ⤵️⤵️
secθ+tanθ=p
p^2 = (sec\theta + \frac{sin\theta}{cos\theta})^2p2=(secθ+cosθsinθ)2
\implies p^2=\frac{(1+sin\theta)^2}{cos^2\theta}⟹p2=cos2θ(1+sinθ)2
\implies p^2 =\frac{(1+sin\theta)^2}{1-sin^2\theta}⟹p2=1−sin2θ(1+sinθ)2
\implies p^2=\frac{(1+sin\theta)^2}{(1+sin\theta)(1-sin\theta)}⟹p2=(1+sinθ)(1−sinθ)(1+sinθ)2
\implies p^2=\frac{1+sin\theta}{1-sin\theta}⟹p2=1−sinθ1+sinθ
p^2-1 =\frac{1+sin\theta}{1-sin\theta}-1p2−1=1−sinθ1+sinθ−1
\implies p^2-1=\frac{1+sin\theta-1+sin\theta}{1-sin\theta}⟹p2−1=1−sinθ1+sinθ−1+sinθ
\implies p^2-1=\frac{2sin\theta}{1-sin\theta}⟹p2−1=1−sinθ2sinθ .................(1)
p^2+1=\frac{1+sin\theta+1-sin\theta}{1-sin\theta}[p2+1=1−sinθ1+sinθ+1−sinθ[
p^2+1=\frac{2}{1+sin\theta}p2+1=1+sinθ2 ........................(2)
Dividing 1 and 2
\frac{p^2-1}{p^2+1}=\frac{\frac{2 sin\theta}{1-sin\theta}}{\frac{2}{1-sin\theta}}p2+1p2−1=1−sinθ21−sinθ2sinθ
\implies \frac{2 sin\theta}{2}⟹22sinθ
\implies sin\theta⟹sinθ
Thus
\boxed{\frac{p^2-1}{p^2+1}=sin\theta}p2+1p2−1=sinθ
Hope that helps ❣❣
Plss di app mujhe follow karo ....
Ur answer ⤵️⤵️
secθ+tanθ=p
p^2 = (sec\theta + \frac{sin\theta}{cos\theta})^2p2=(secθ+cosθsinθ)2
\implies p^2=\frac{(1+sin\theta)^2}{cos^2\theta}⟹p2=cos2θ(1+sinθ)2
\implies p^2 =\frac{(1+sin\theta)^2}{1-sin^2\theta}⟹p2=1−sin2θ(1+sinθ)2
\implies p^2=\frac{(1+sin\theta)^2}{(1+sin\theta)(1-sin\theta)}⟹p2=(1+sinθ)(1−sinθ)(1+sinθ)2
\implies p^2=\frac{1+sin\theta}{1-sin\theta}⟹p2=1−sinθ1+sinθ
p^2-1 =\frac{1+sin\theta}{1-sin\theta}-1p2−1=1−sinθ1+sinθ−1
\implies p^2-1=\frac{1+sin\theta-1+sin\theta}{1-sin\theta}⟹p2−1=1−sinθ1+sinθ−1+sinθ
\implies p^2-1=\frac{2sin\theta}{1-sin\theta}⟹p2−1=1−sinθ2sinθ .................(1)
p^2+1=\frac{1+sin\theta+1-sin\theta}{1-sin\theta}[p2+1=1−sinθ1+sinθ+1−sinθ[
p^2+1=\frac{2}{1+sin\theta}p2+1=1+sinθ2 ........................(2)
Dividing 1 and 2
\frac{p^2-1}{p^2+1}=\frac{\frac{2 sin\theta}{1-sin\theta}}{\frac{2}{1-sin\theta}}p2+1p2−1=1−sinθ21−sinθ2sinθ
\implies \frac{2 sin\theta}{2}⟹22sinθ
\implies sin\theta⟹sinθ
Thus
\boxed{\frac{p^2-1}{p^2+1}=sin\theta}p2+1p2−1=sinθ
Hope that helps ❣❣
Plss di app mujhe follow karo ....
Similar questions