Math, asked by muakanshakya, 1 year ago

hii ....mates
.
➖➖➖➖➖.➖➖➖⬇️
Ques:- If sec theta + tan theta = p, Prove that sin theta=
 \frac{ {p }^{2}  - 1}{ {p}^{2}  + 1}


Spammers will be reported

Answers

Answered by Anonymous
4

sec\theta + tan\theta = p

p^2 = (sec\theta + \frac{sin\theta}{cos\theta})^2

\implies p^2=\frac{(1+sin\theta)^2}{cos^2\theta}

\implies p^2 =\frac{(1+sin\theta)^2}{1-sin^2\theta}

\implies p^2=\frac{(1+sin\theta)^2}{(1+sin\theta)(1-sin\theta)}

\implies p^2=\frac{1+sin\theta}{1-sin\theta}

p^2-1 =\frac{1+sin\theta}{1-sin\theta}-1

\implies p^2-1=\frac{1+sin\theta-1+sin\theta}{1-sin\theta}

\implies p^2-1=\frac{2sin\theta}{1-sin\theta}.................(1)

p^2+1=\frac{1+sin\theta+1-sin\theta}{1-sin\theta}[

p^2+1=\frac{2}{1+sin\theta}........................(2)

Dividing 1 and 2

\frac{p^2-1}{p^2+1}=\frac{\frac{2 sin\theta}{1-sin\theta}}{\frac{2}{1-sin\theta}}

\implies \frac{2 sin\theta}{2}

\implies sin\theta

Thus

\boxed{\frac{p^2-1}{p^2+1}=sin\theta}

Hence proved

Hope it helps you :-)

_________________________________________________________________________


Anonymous: welcome
Answered by Anonymous
4
Heya !!


Ur answer ⤵️⤵️

secθ+tanθ=p

p^2 = (sec\theta + \frac{sin\theta}{cos\theta})^2p2=(secθ+cosθsinθ​)2

\implies p^2=\frac{(1+sin\theta)^2}{cos^2\theta}⟹p2=cos2θ(1+sinθ)2​

\implies p^2 =\frac{(1+sin\theta)^2}{1-sin^2\theta}⟹p2=1−sin2θ(1+sinθ)2​

\implies p^2=\frac{(1+sin\theta)^2}{(1+sin\theta)(1-sin\theta)}⟹p2=(1+sinθ)(1−sinθ)(1+sinθ)2​

\implies p^2=\frac{1+sin\theta}{1-sin\theta}⟹p2=1−sinθ1+sinθ​

p^2-1 =\frac{1+sin\theta}{1-sin\theta}-1p2−1=1−sinθ1+sinθ​−1

\implies p^2-1=\frac{1+sin\theta-1+sin\theta}{1-sin\theta}⟹p2−1=1−sinθ1+sinθ−1+sinθ​

\implies p^2-1=\frac{2sin\theta}{1-sin\theta}⟹p2−1=1−sinθ2sinθ​ .................(1)

p^2+1=\frac{1+sin\theta+1-sin\theta}{1-sin\theta}[p2+1=1−sinθ1+sinθ+1−sinθ​[

p^2+1=\frac{2}{1+sin\theta}p2+1=1+sinθ2​ ........................(2)

Dividing 1 and 2

\frac{p^2-1}{p^2+1}=\frac{\frac{2 sin\theta}{1-sin\theta}}{\frac{2}{1-sin\theta}}p2+1p2−1​=1−sinθ2​1−sinθ2sinθ​​

\implies \frac{2 sin\theta}{2}⟹22sinθ​

\implies sin\theta⟹sinθ

Thus

\boxed{\frac{p^2-1}{p^2+1}=sin\theta}p2+1p2−1​=sinθ​


Hope that helps ❣❣


Plss di app mujhe follow karo ....
Similar questions