hii please answer. ..trigno
Answers
Answer:
Sin 2A = 2 SinA.CosA
Question: To Prove Cos²2A + 4Sin²A.Cos²A = 1
LHS:
⇒ Cos²2A + 4 Sin²A.Cos²A
4 Sin²A.Cos²A can also be written as : ( 2 SinA.CosA )²
⇒ Cos²2A + ( 2 SinA.CosA )²
According to identity we know that Sin2A = 2 SinA.CosA
⇒ Cos²2A + ( Sin 2A )²
⇒ Cos²2A + Sin²2A
Let us Take 2A to be some Ф
⇒ Cos²Ф + Sin²Ф
We know the identity that, Cos²A + Sin²A = 1
Hence on applying this we get that,
⇒ Cos²Ф + Sin²Ф = 1
⇒ 1 = 1
⇒ LHS = RHS
Hence Proved !!
Solution :→ → ↓
↓ ← ← ← ↓
Given:
[REMEMBER :
]
________________________________________________
____________________________________________________
[ We know that :
]
___________________________________________________
____________________________________________________
[ Using the formula:
]
_____________________________________________________
____________________________________________________
[ Using the formula:
]
__________________________________________________
[ ]
_____________________________________________
Hence LHS = RHS [ Proved ]
Hope it helps you:-)
_______________________________________________________________