Math, asked by Bestylish, 1 year ago

hii please answer. ..trigno

Attachments:

Anonymous: Class 11?

Answers

Answered by Steph0303
2

Answer:

Sin 2A = 2 SinA.CosA

Question: To Prove Cos²2A + 4Sin²A.Cos²A = 1

LHS:

⇒ Cos²2A + 4 Sin²A.Cos²A

4 Sin²A.Cos²A can also be written as : ( 2 SinA.CosA )²

⇒ Cos²2A + ( 2 SinA.CosA )²

According to identity we know that Sin2A = 2 SinA.CosA

⇒ Cos²2A + ( Sin 2A )²

⇒ Cos²2A + Sin²2A

Let us Take 2A to be some Ф

⇒ Cos²Ф + Sin²Ф

We know the identity that, Cos²A + Sin²A = 1

Hence on applying this we get that,

⇒ Cos²Ф + Sin²Ф = 1

⇒ 1 = 1

⇒ LHS = RHS

Hence Proved !!

Answered by Anonymous
5

Solution :→   →  ↓

↓   ←     ←     ←   ↓

Given:

cos^22\theta + 4 cos^2\theta sin^2\theta

[REMEMBER : cos2\theta = 2cos^2\theta-1

\implies cos^22\theta = ( 2 cos^2\theta-1)^2]

________________________________________________

\implies cos^22\theta + 4 cos^2\theta sin^2\theta = (2 cos^2\theta - 1)^2+4cos^2\theta sin^2\theta

____________________________________________________

\implies (2 cos^2\theta-sin^2\theta-cos^2\theta)^2+4cos^2\theta sin^2\theta

[ We know that :

sin^2\theta+cos^2\theta=1

\implies -1=-sin^2\theta-cos^2\theta ]

___________________________________________________

\implies (2 cos^2\theta-sin^2\theta-cos^2\theta)^2+4cos^2\theta sin^2\theta

\implies (cos^2\theta-sin^2\theta)^2+4sin^2\theta cos^2\theta

____________________________________________________

\implies cos^4\theta+sin^4\theta - 2cos^2 \theta sin^2\theta+cos^2\theta sin^2\theta

[ Using the formula:

(a-b)^2=a^2+b^2-2ab ]

_____________________________________________________

\implies cos^4\theta+sin^4\theta + 2cos^2\theta sin^2\theta

____________________________________________________

\implies (cos^2\theta + sin^2\theta)^2

[ Using the formula:

(a+b)^2=a^2+b^2+2ab ]

__________________________________________________

\implies 1

[ sin^2\theta+cos^2\theta=1 ]

_____________________________________________


Hence LHS = RHS [ Proved ]

Hope it helps you:-)

_______________________________________________________________

Similar questions