Math, asked by AryanChauhan0942, 10 months ago

Hii please solve this ​

Attachments:

Answers

Answered by developernetcoreinfo
1

Answer:

SOlving R.H.S

Step-by-step explanation:

Using (a-b)^{2} = a^{2}+b^{2}-2ab

= \frac{1}{2}(x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}]

=\frac{1}{2}(x+y+z)[(x^{2}+y^{2} -2xy )+(y^{2} +z^{2}-2yz )+(z^{2}+x^{2}-2xz)]

= \frac{1}{2}(x+y+z)[2x^{2}+2y^{2}+2z^{2} -2xy-2yz -2xz]

= \frac{1}{2}(x+y+z)2[x^{2}+y^{2}+z^{2} -xy-yz -xz]

= (x+y+z)[x^{2}+y^{2}+z^{2} -xy-yz -xz]

We know x^{3} +y^{3} + z^{3}-3xyz = (x+y+z)[x^{2}+y^{2}+z^{2} -xy-yz -xz]

= x^{3} +y^{3} + z^{3}-3xyz

= L.H.S (prooved)

Similar questions