Math, asked by gaureesharma145, 9 months ago

hii! Plz solve this answer fast...❤️plz ❤️​

Attachments:

Answers

Answered by StarrySoul
20

Solution 1 :

★ 15(x-9) - 2(x-12) + 5(x+6) = 0

→ 15x - 135 - 2x + 24 + 5x + 30 = 0

→ 15x - 2x + 5x - 135 + 24 + 30 = 0

→ 20x - 2x -135 + 54 = 0

→ 18x - 81 = 0

→ 18x = 81

→ x = \sf\dfrac{81}{18}

→ x = \sf\dfrac{9}{2}

x = 4.5

Solution 2 :

Let 2n be the first consecutive even number, (2n + 2) be the second and (2n + 4) be the third consecutive even number

According to the question :

→ 2n + (2n + 2) + (2n + 4) = 96

→ 2n + 2n + 2 + 2n + 4 = 96

→ 6n + 6 = 96

→ 6n = 90

→ x = \sf\dfrac{90}{6}

→ x = 15

• First even number = 2(15) = 30

• Second even number = 2(15) + 2 = 32

• Third even number = 2(15) + 4 = 34

Solution 3 :

\sf\dfrac{2x}{3} + 3 = 11

\sf\dfrac{2x}{3} = 11 - 3

\sf\dfrac{2x}{3} = 8

→ 2x = 8 × 3

→ 2x = 24

→ x = \sf\dfrac{24}{2}

x = 12

Verification :

Putting the value of x as 12

\sf\dfrac{2\: \times 12}{3} + 3 = 11

\sf\dfrac{24}{3} + 3 = 11

→ 8 + 3 = 11

11 = 11

Hence, Verified.

Solution 4 :

★ 0.06x + 0.09 (15 - x) = 0.03 (15)

→ 0.06x + 1.35 - 0.09x = 0.45

→ 0.06x - 0.09x = 0.45 - 1.35

→ - 0.03x = - 0.9

→ x = \sf\dfrac{-0.9}{-0.03}

x = 30

Answered by MissKalliste
45

Answer:

1) \rm{\dfrac{9}{2}\:or\:4.5}

2) \rm{30, 32, 34}

3) \rm{12}

4) \rm{30}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution of 1) :

\rm\leadsto{15(x - 9) - 2(x - 12) + 5(x + 6) = 0}

\rm\mapsto{15x - 135 - 2x + 24 + 5x + 30 = 0}

\rm\mapsto{18x - 81 = 0}

\rm\mapsto{18x = 0 + 81 = 81}

\rm\mapsto{x = \cancel{\dfrac{81}{18}} = \dfrac{9}{2}}

\boxed{\rm x = \dfrac{9}{2}\:or\: 4.5}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution of 2) :

→ To find the three consecutive even numbers whose sum is 96. Let x, x + 2, x + 4 be the three consecutive even numbers whose sum is 96.

\rm\mapsto{x + x + 2 + x + 4 = 96}

\rm\mapsto{3x + 6 = 96}

\rm\mapsto{3x = 96 - 6 = 90}

\rm\mapsto{x = \cancel{\dfrac{90}{3}}}

\boxed{\rm x = 30}

\rm{x = 30, (30) + 2 = 32, (30) + 4 = 34}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution of 3) :

\rm\leadsto{\dfrac{2}{3}x + 3 = 11}

\rm\mapsto{\dfrac{2}{3}x = 11 - 3}

\rm\mapsto{\dfrac{2}{3}x = 8}

→ There are two methods to solve it further :-

Method (i) : \rm\mapsto{x = 8 \times \dfrac{3}{2}}

\boxed{\rm x = 12}

Method (ii) : \rm\mapsto{2x = 8 \times 3 = 24}

\rm\mapsto{x = \dfrac{24}{2}}

\boxed{\rm x = 12}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution of 4) :

\rm\leadsto{0.06x + 0.09 (15 - x) = 0.03 (15)}

\rm\mapsto{0.06x + 1.35 - 0.09x = 0.45}

\rm\mapsto{0.06x - 0.09x = 0.45 - 1.35}

\rm\mapsto{ \cancel{-} 0.03x = \cancel{-} 0.9}

\rm\mapsto{x = \dfrac{09 \times 100}{003 \times 10}}

\boxed{\rm x = 30}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions