Math, asked by saishree07, 11 months ago

hiiii





solve the question from number 3 to 10 no spamming at all or the answer will be deleted.

the question are from linear equation..
explain all the questions properly....

Attachments:

Answers

Answered by Anonymous
27

Solution 3:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

21 - 3(x - 7) = x + 20

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{21-3(x-7)=x+20}\\\\\sf{21-3x+21=x+20}\\\\\sf{42-3x=x+20}\\\\\sf{-3x-x=20-42}\\\\\sf{-4x=-22}\\\\\sf{x=\cancel{\dfrac{-22}{-4} }}\\\\\sf{\pink{x=\dfrac{11}{2} }}

Solution 4:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

3(y -7) - 2(3y - 4) = (2 - 5y)

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{3(y-7)-2(3y-4)=(2-5y)}\\\\\sf{3y-21-6y+8=2-5y}\\\\\sf{-3y-13=2-5y}\\\\\sf{-3y+5y=2+13}\\\\\sf{2y=15}\\\\\sf{\pink{y=\dfrac{15}{2} }}

Solution 5:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

3(t - 5) - 16t = 12 - 2(t - 3)

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{3(t-5)-16t=12-2(t-3)}\\\\\sf{3t-15-16t=12-2t+6}\\\\\sf{-15-13t=12-2t+6}\\\\\sf{-13t+2t=18+15}\\\\\sf{-11t=33}\\\\\sf{t=\cancel{\dfrac{33}{-11} }}\\\\\sf{\pink{t=-3}}

Solution 6:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

\sf{\dfrac{3x}{4} -\dfrac{(x-4)}{3} =\dfrac{5}{3} }

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{\dfrac{3x}{4} -\dfrac{(x-4)}{3} =\dfrac{5}{3} }\\\\\sf{\dfrac{9x-4x+16}{12} =\dfrac{5}{3} }\\\\\sf{3(9x-4x+16)=5(12)}\\\\\sf{27x-12x+48=60}\\\\\sf{15x+48=60}\\\\\sf{15x=60-48}\\\\\sf{15x=12}\\\\\sf{x=\cancel{\dfrac{12}{15}} }\\\\\sf{\pink{x=\dfrac{4}{5}}}

Solution 7:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

\sf{\dfrac{(4x+1)}{3} +\dfrac{(2x-1)}{2} -\dfrac{(3x-7)}{5} =6}

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{\dfrac{(4x+1)}{3}+\dfrac{(2x-1)}{2} -\dfrac{(3x-7)}{5} =6}\\\\\\\sf{\dfrac{10(4x+1)+15(2x-1)-6(3x-7)}{30} =6}\\\\\\\sf{\dfrac{40x+10+30x-15-18x+42}{30} =6}\\\\\\\sf{\dfrac{52x+37}{30} =6}\\\\\\\sf{52x+37=180}\\\\\\\sf{52x=180-37}\\\\\\\sf{52x=143}\\\\\\\sf{\pink{x=\dfrac{143}{52} }}

Solution 8:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

\sf{\dfrac{(z+5)}{6} -\dfrac{(z+1)}{9} =\dfrac{(z+3)}{4} }

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{\dfrac{(z+5)}{6} -\dfrac{(z+1)}{9} =\dfrac{(z+3)}{4} }\\\\\\\sf{\dfrac{3(z+5)-2(z+1)}{18} =\dfrac{(z+3)}{4} }\\\\\\\sf{\dfrac{3z+15-2z-2}{18} =\dfrac{(z+3)}{4} }\\\\\\\sf{\dfrac{z+13}{18} =\dfrac{z+3}{4} }\\\\\\\sf{4(z+13)=18(z+3)}\\\\\\\sf{4z+52=18z+54}\\\\\\\sf{4z-18z=54-52}\\\\\\\sf{-14z=2}\\\\\\\sf{z=-\cancel{\dfrac{2}{14} }}\\\\\\\sf{\pink{z=-\dfrac{1}{7} }}

Solution 9:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

\sf{\dfrac{2-9z}{17-4z} =\dfrac{4}{5} }

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{\dfrac{2-9z}{17-4z} =\dfrac{4}{5} }\\\\\\\sf{5(2-9z)=4(17-4z)}\\\\\\\sf{10-45z=68-16z}\\\\\\\sf{-45z+16z=68-10}\\\\\\\sf{-29z=58}\\\\\\\sf{z=\cancel{\dfrac{58}{-29} }}\\\\\\\sf{\pink{z=-2}}

Solution 10:

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

\sf{\dfrac{2x-3}{3x-1} =\dfrac{2x+3}{3x+4} }

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

\sf{\dfrac{2x-3}{3x-1} =\dfrac{2x+3}{3x+4} }\\\\\\\sf{(3x+4)(2x-3)=(3x-1)(2x+3)}\\\\\\\sf{\cancel{6x^{2}} -9x+8x-12=\cancel{6x^{2}} +9x-2x-3}\\\\\\\sf{-9x+8x-12=9x-2x-3}\\\\\\\sf{-x-12=7x-3}\\\\\\\sf{-x-7x=3+12}\\\\\\\sf{-8x=15}\\\\\\\sf{\pink{x=-\dfrac{15}{8} }}


xItzKhushix: Amazing!!! Best use of latex!
Answered by Saby123
15

 \tt{\huge{\pink{Hello!!! }}}

Instead of solving 3 to 10, I solved the entire exercise.

Since , it will take a long time typing, I solved in the attachment.

Hope you will bear with the inconvenience....

 \tt{\pink{-------------}}

Attachments:
Similar questions