hiiiiii.....
don't post irrelevant answers
Attachments:
Answers
Answered by
0
Answer:
2: second is answer of the following
Answered by
2
(cosθ/(1+sinθ))+ ((1-sinθ)/cosθ)
Take only the cosθ/1+sinθ for now
Multiply by 1-sinθ and divide by 1-sinθ also.
∴(cosθ/(1+sinθ))((1-sinθ)/(1-sinθ))
cosθ(1-sinθ)/1-sin^2 θ
cosθ(1-sinθ)/cos^2 θ
(1-sinθ)/cosθ
∴cosθ/(1+sinθ)=(`1-sinθ)/cosθ
∴The equation will become
cosθ/(1+sinθ) + (1-sinθ)/cosθ
= (1-sinθ)/cosθ + (1-sinθ)/cosθ
=2(1-sinθ)/cosθ
2secθ(1-sinθ)
2secθ-2secθsinθ
2secθ-(2sinθ/cosθ)
2secθ-2tanθ
2(secθ-tanθ)
PLS MARK AS BRAINLIEST IF IT HELPED YOU :)
Similar questions